Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.025
Filtrar
1.
Clin Lab ; 70(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965949

RESUMO

BACKGROUND: The goal was to improve the clinical cognition of nonaccelerating myelodysplastic/myeloproliferative neoplasms-unclassifiable (MDS/MPN-U) and avoid misdiagnosis or delayed diagnosis. METHODS: The clinical manifestations, laboratory indicators, histopathology, and therapeutic effects of a patient with nonaccelerating MDS/MPN-U were analyzed and the relevant literature was reviewed. RESULTS: Blood routine: white blood cell 98.48 x 109/L, red blood cell 3.20 x 1012/L, basophils 0.42 x 109/L, eosinophils 1.31 x 109/L, hemoglobin 112 g/L, and platelet 113 x 109/L. Blood smears showed granulocytosis and cells at various stages, polylobular granulocytes also can be seen. Bone marrow images show granulocytosis and dysplastic neutrophils, such as binuclear granulocyte, cyclic nuclear granulocyte, nuclear punch, cytoplasm vacuoles, polylobular granulocytes and so on. Bone marrow biopsy: Bone marrow proliferation tumor, combined with cell morphology and molecular biochemistry is recommended. Gene test showed Jak-2 positive, BCR/ABL and MPL negative. Chromosome examination indicated the presence of 46, XY, add (2)(p25), del (12) (p11.2p13)[16]/46, XY. CONCLUSIONS: MDS/MPN-U with granulocytosis and dysplastic neutrophils is rare, mostly in the elderly, and the diagnosis should be made except for other myeloid tumors. Currently, there is no uniform treatment guideline or expert consensus. The treatment options are limited and need to be further confirmed by more studies. MDS/ MPN-U with granulocytosis and dysplastic neutrophils has adverse prognostic factors such as advanced age, increase of bone marrow original cells and related gene mutations. Whether the adverse prognosis is related to specific gene mutations and cytogenetic variation remains to be clarified by more research data.


Assuntos
Granulócitos , Humanos , Masculino , Medula Óssea/patologia , Doenças Mieloproliferativas-Mielodisplásicas/diagnóstico , Doenças Mieloproliferativas-Mielodisplásicas/genética , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Idoso
2.
Sci Rep ; 14(1): 16711, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030308

RESUMO

DARS, encoding for aspartyl-tRNA synthetase, is implicated in the pathogenesis of various cancers, including renal cell carcinoma, glioblastoma, colon cancer, and gastric cancer. Its role in BCR/ABL1-negative myeloproliferative neoplasms (MPNs), however, remains unexplored. This study aimed to elucidate the expression of DARS in patients with MPNs (PV 23, ET 19, PMF 16) through immunohistochemical analysis and to examine the profiles of circulating immune cells and cytokines using flow cytometry. Our findings indicate a significant overexpression of DARS in all MPNs subtypes at the protein level compared to controls (P < 0.05). Notably, elevated DARS expression was linked to splenomegaly in MPNs patients. The expression of DARS showed a negative correlation with CD4+ T cells (R = - 0.451, P = 0.0004) and CD4+ T/CD8+ T cell ratio (R = - 0.3758, P = 0.0040), as well as with CD68+ tumor-associated macrophages (R = 0.4037, P = 0.0017). Conversely, it was positively correlated with IL-2 (R = 0.5419, P < 0.001), IL-5 (R = 0.3161, P = 0.0166), IL-6 (R = 0.2992, P = 0.0238), and IFN-γ (R = 0.3873, P = 0.0029). These findings underscore a significant association between DARS expression in MPNs patients and specific clinical characteristics, as well as immune cell composition. Further investigation into the interplay between DARS and the immune microenvironment in MPNs could shed light on the underlying mechanisms of MPNs pathogenesis and immune dysregulation.


Assuntos
Proteínas de Fusão bcr-abl , Transtornos Mieloproliferativos , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Transtornos Mieloproliferativos/imunologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Idoso , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo
3.
Genes Chromosomes Cancer ; 63(7): e23257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031442

RESUMO

Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates. The GMS-MGP displayed uniform coverage across all targets, including recognized difficult GC-rich areas. The validation of 117 previously described somatic variants showed a 100% concordance with a limit-of-detection of a 0.5% variant allele frequency (VAF), achieved by utilizing error correction and filtering against a panel-of-normals. A national interlaboratory comparison investigating 56 somatic variants demonstrated highly concordant results in both detection rate and reported VAFs. In addition, prospective analysis of 323 patients analyzed with the GMS-MGP as part of standard-of-care identified clinically significant genes as well as recurrent mutations in less well-studied genes. In conclusion, the GMS-MGP workflow supports sensitive detection of all clinically relevant genes, facilitates novel findings, and is, based on the capture-based design, easy to update once new guidelines become available. The GMS-MGP provides an important step toward nationally harmonized precision diagnostics of myeloid malignancies.


Assuntos
Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Mutação , Suécia , Testes Genéticos/métodos , Testes Genéticos/normas , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Frequência do Gene
4.
Hematology ; 29(1): 2375045, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39012197

RESUMO

OBJECTIVES: Constitutive activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway is central to the pathogenesis of myeloproliferative neoplasms (MPNs). Long noncoding RNAs (lncRNAs) regulate diverse biological processes. However, the role of lncRNAs in MPN pathogenesis is not well studied. METHODS: The expression of lnc-AC004893 in MPN patients was measured by quantitative real-time PCR (qRT-PCR). Gene-specific short hairpin RNAs (shRNAs) were designed to inhibit the expression of lnc-AC004893, and western blot was performed to explore the role of lnc-AC004893 via regulating the JAK2/STAT5 signaling pathway. Furthermore, co-IP was performed to determine the binding ability of lnc-AC004893 and STAT5 protein. Finally, the BaF3-JAK2V617F-transplanted mouse model was used to assess the biological role of lnc-ac004893 in vivo. RESULTS: We report that lnc-AC004893, a poorly conserved pseudogene-209, is substantially upregulated in MPN cells compared with normal controls (NCs). Knockdown of lnc-AC004893 by specific shRNAs suppressed cell proliferation and decreased colony formation. Furthermore, the knockdown of lnc-AC004893 reduced the expression of p-STAT5 but not total STAT5 in HEL and murine IL-3-dependent Ba/F3 cells, which present constitutive and inducible activation of JAK2/STAT5 signaling. In addition, inhibition of murine lnc-ac004893 attenuated BaF3-JAK2V617F-transplanted phenotypes and extended the overall survival. Mechanistically, knockdown of lnc-AC004893 enhanced the binding ability of STAT5 and protein tyrosine phosphatase SHP1. Furthermore, knockdown of lnc-AC004893 decreased STAT5-lnc-AC004893 interaction but not SHP1-lnc-AC004893 interaction. CONCLUSION: Lnc-AC004893 regulates STAT5 phosphorylation by affecting the interaction of STAT5 and SHP1. Lnc-AC004893 might be a potential therapeutic target for MPN patients.


Assuntos
Transtornos Mieloproliferativos , RNA Longo não Codificante , Fator de Transcrição STAT5 , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , RNA Longo não Codificante/genética , Humanos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Camundongos , Animais , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
5.
Medicine (Baltimore) ; 103(24): e38556, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875377

RESUMO

This study aimed to assess hematological diseases next-generation sequencing (NGS) panel enhances the diagnosis and classification of myeloid neoplasms (MN) using the 5th edition of the WHO Classification of Hematolymphoid Tumors (WHO-HAEM5) and the International Consensus Classification (ICC) of Myeloid Tumors. A cohort of 112 patients diagnosed with MN according to the revised fourth edition of the WHO classification (WHO-HAEM4R) underwent testing with a 141-gene NGS panel for hematological diseases. Ancillary studies were also conducted, including bone marrow cytomorphology and routine cytogenetics. The cases were then reclassified according to WHO-HAEM5 and ICC to assess the practical impact of these 2 classifications. The mutation detection rates were 93% for acute myeloid leukemia (AML), 89% for myelodysplastic syndrome (MDS), 94% for myeloproliferative neoplasm (MPN), and 100% for myelodysplasia/myeloproliferative neoplasm (MDS/MPN) (WHO-HAEM4R). NGS provided subclassified information for 26 and 29 patients with WHO-HAEM5 and ICC, respectively. In MPN, NGS confirmed diagnoses in 16 cases by detecting JAK2, MPL, or CALR mutations, whereas 13 "triple-negative" MPN cases revealed at least 1 mutation. NGS panel testing for hematological diseases improves the diagnosis and classification of MN. When diagnosed with ICC, NGS produces more classification subtype information than WHO-HAEM5.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/classificação , Adulto , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/classificação , Idoso de 80 Anos ou mais , Janus Quinase 2/genética , Organização Mundial da Saúde , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/diagnóstico , Receptores de Trombopoetina/genética , Calreticulina/genética , Adulto Jovem
6.
J Hematol Oncol ; 17(1): 43, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853260

RESUMO

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Assuntos
Inflamação , Janus Quinase 2 , Transtornos Mieloproliferativos , Neutrófilos , Animais , Neutrófilos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Calreticulina/genética , Calreticulina/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
7.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928358

RESUMO

Myeloproliferative neoplasms (MPNs), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal stem cell disorders defined by an excessive production of functionally mature and terminally differentiated myeloid cells. MPNs can transform into secondary acute myeloid leukemia (sAML/blast phase MPN) and are linked to alterations in the redox balance, i.e., elevated concentrations of reactive oxygen species and markers of oxidative stress (OS), and changes in antioxidant systems. We evaluated OS in 117 chronic phase MPNs and 21 sAML cases versus controls by measuring total antioxidant capacity (TAC) and 8-hydroxy-2'-deoxy-guanosine (8-OHdG) concentrations. TAC was higher in MPNs than controls (p = 0.03), particularly in ET (p = 0.04) and PMF (p = 0.01). MPL W515L-positive MPNs had higher TAC than controls (p = 0.002) and triple-negative MPNs (p = 0.01). PMF patients who had treatment expressed lower TAC than therapy-free subjects (p = 0.03). 8-OHdG concentrations were similar between controls and MPNs, controls and sAML, and MPNs and sAML. We noted associations between TAC and MPNs (OR = 1.82; p = 0.05), i.e., ET (OR = 2.36; p = 0.03) and PMF (OR = 2.11; p = 0.03), but not sAML. 8-OHdG concentrations were not associated with MPNs (OR = 1.73; p = 0.62) or sAML (OR = 1.89; p = 0.49). In conclusion, we detected redox imbalances in MPNs based on disease subtype, driver mutations, and treatment history.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Antioxidantes , Transtornos Mieloproliferativos , Humanos , Masculino , Feminino , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Pessoa de Meia-Idade , Idoso , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Antioxidantes/metabolismo , Adulto , Estresse Oxidativo , Idoso de 80 Anos ou mais , Crise Blástica/metabolismo , Crise Blástica/genética , Crise Blástica/patologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia
9.
Rinsho Ketsueki ; 65(5): 375-384, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825516

RESUMO

Many novel agents have been developed for BCR::ABL1-negaive myeloproliferative neoplasms (MPN), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Some of these agents not only achieve hematologic complete response, reduce spleen size, and alleviate constitutional symptoms, but also induce molecular response, which means that they reduce the allele burden of driver gene mutations. These agents also prevent and alleviate fibrosis in bone marrow, which reduces the incidence of thrombotic events and disease progression and might improve prognosis. This article discusses the latest findings and promising treatments, including ongoing clinical trials, in PV, ET, and PMF.


Assuntos
Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/terapia , Transtornos Mieloproliferativos/diagnóstico , Mutação , Terapia de Alvo Molecular
11.
Br J Haematol ; 205(1): 48-60, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853641

RESUMO

Myeloproliferative neoplasms (MPN) are characterized by a clonal proliferation of myeloid lineage cells within the bone marrow. The classical BCR-ABL negative MPNs are comprised of polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Historically, the majority of MPNs are diagnosed in adults older than 60 years of age; however, in recent years, there has been recognition of MPNs in the adolescent and young adult (AYA) population. AYAs with MPN, typically defined as between the ages of 15 and 39 years old, may comprise up to 20% of patients diagnosed with MPN. They demonstrate unique patterns of driver mutations and thrombotic events and remain at risk for progression to more aggressive disease states. Given the likely long length of time they will live with their disease, there is a significant unmet need in identifying well-tolerated and effective treatment options for these patients, particularly with the advent of disease modification. In this review, we provide a comprehensive overview of the clinical features, disease course and management of AYA patients with MPN and, in doing so, highlight key characteristics that distinguish them from their older counterparts.


Assuntos
Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/terapia , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/genética , Adolescente , Adulto , Adulto Jovem , Masculino , Feminino
12.
Math Med Biol ; 41(2): 110-134, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875109

RESUMO

Myeloproliferative neoplasms (MPN) are blood cancers that appear after acquiring a driver mutation in a hematopoietic stem cell. These hematological malignancies result in the overproduction of mature blood cells and, if not treated, induce a risk of cardiovascular events and thrombosis. Pegylated IFN$\alpha $ is commonly used to treat MPN, but no clear guidelines exist concerning the dose prescribed to patients. We applied a model selection procedure and ran a hierarchical Bayesian inference method to decipher how dose variations impact the response to the therapy. We inferred that IFN$\alpha $ acts on mutated stem cells by inducing their differentiation into progenitor cells; the higher the dose, the higher the effect. We found that the treatment can induce long-term remission when a sufficient (patient-dependent) dose is reached. We determined this minimal dose for individuals in a cohort of patients and estimated the most suitable starting dose to give to a new patient to increase the chances of being cured.


Assuntos
Teorema de Bayes , Interferon-alfa , Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Interferon-alfa/administração & dosagem , Conceitos Matemáticos , Relação Dose-Resposta a Droga
15.
Front Immunol ; 15: 1384509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846951

RESUMO

Introduction: The Philadelphia chromosome-negative myeloproliferative neoplasms are a group of slowly progressing haematological malignancies primarily characterised by an overproduction of myeloid blood cells. Patients are treated with various drugs, including the JAK1/2 inhibitor ruxolitinib. Mathematical modelling can help propose and test hypotheses of how the treatment works. Materials and methods: We present an extension of the Cancitis model, which describes the development of myeloproliferative neoplasms and their interactions with inflammation, that explicitly models progenitor cells and can account for treatment with ruxolitinib through effects on the malignant stem cell response to cytokine signalling and the death rate of malignant progenitor cells. The model has been fitted to individual patients' data for the JAK2 V617F variant allele frequency from the COMFORT-II and RESPONSE studies for patients who had substantial reductions (20 percentage points or 90% of the baseline value) in their JAK2 V617F variant allele frequency (n = 24 in total). Results: The model fits very well to the patient data with an average root mean square error of 0.0249 (2.49%) when allowing ruxolitinib treatment to affect both malignant stem and progenitor cells. This average root mean square error is much lower than if allowing ruxolitinib treatment to affect only malignant stem or only malignant progenitor cells (average root mean square errors of 0.138 (13.8%) and 0.0874 (8.74%), respectively). Discussion: Systematic simulation studies and fitting of the model to the patient data suggest that an initial reduction of the malignant cell burden followed by a monotonic increase can be recapitulated by the model assuming that ruxolitinib affects only the death rate of malignant progenitor cells. For patients exhibiting a long-term reduction of the malignant cells, the model predicts that ruxolitinib also affects stem cell parameters, such as the malignant stem cells' response to cytokine signalling.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Nitrilas , Pirazóis , Pirimidinas , Humanos , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Janus Quinase 2/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Modelos Teóricos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 819-824, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926973

RESUMO

OBJECTIVE: To analyze the DTA (DNMT3A, TET2, ASXL1) mutations in patients with myeloproliferative neoplasms (MPN), and preliminarily explore their correlation with thromboembolism. METHODS: Clinical characteristics of 62 patients diagnosed de novo MPN at Central Hospital Affiliated to Shandong First Medical University from September 2016 to September 2022 were retrospectively analyzed. Next-generation sequencing was used to detect 35 MPN-related genes, and the DTA mutations in MPN patients and their relationship with thromboembolic events were analyzed. RESULTS: 75.8% (47/62) of the patients presented pathogenic non-driver mutations, and the mean number of pathogenic non-driver mutations per patient was 1.08. Among them, the most frequently mutated non-driver genes were TET2 (38.7%, 24/62), DNMT3A (9.7%, 6/62) and ASXL1 (6.5%, 4/62). The presence of DTA gene mutations was 50% (31/62) in the total MPN patients, and mainly accompanied by driver mutations. The mutation rate of DTA in patients aged ≥60 years was significantly higher than that in patients <60 years old (P =0.039). The incidence of thromboembolism in patients with DTA mutation was 58.1% (18/31), which was significantly higher than that in patients without DTA mutation (19.4%, 6/31) (P =0.002). The TET2 gene mutation rate in MPN patients with thromboembolism was 66.7% (16/24), which was significantly higher than that in patients without thromboembolism (21.1%, 8/38) (P =0.00). CONCLUSION: Patients with MPN have a higher incidence of DTA mutations, which are mainly accompanied by driver gene mutations. The incidence of thromboembolism in MPN patients with DTA mutations is higher than that in patients without DTA mutations. Especially, the elderly (≥60 years) essential thrombocythemia(ET) and polycythemia vera(PV) patients with TET2 mutation should be vigilant for thromboembolic events.


Assuntos
DNA Metiltransferase 3A , Proteínas de Ligação a DNA , Dioxigenases , Mutação , Transtornos Mieloproliferativos , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Tromboembolia , Humanos , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Tromboembolia/genética , Estudos Retrospectivos , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , DNA (Citosina-5-)-Metiltransferases/genética , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala
17.
Hum Pathol ; 149: 66-74, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879086

RESUMO

CSF3R activating mutation is a genetic hallmark of chronic neutrophilic leukemia (CNL), and is also present in a subset of atypical chronic myeloid leukemia (aCML), but infrequent in other myeloid neoplasms. However, the occurrence of CSF3R mutations in various myeloid neoplasms is not well studied. Here we evaluate the spectrum of CSF3R mutations and the clinicopathologic features of CSF3R mutated myeloid neoplasms. We retrospectively identified CSF3R mutations in a variety of myeloid neoplasms: two CNL, three atypical chronic myeloid leukemia (aCML), nine acute myeloid leukemia (AML), one chronic myelomonocytic leukemia, and one myeloproliferative neoplasm. The prototypic T618I mutation was found in 50% of cases: CNL (2/2), aCML (2/3) and AML (4/9). We observed a new recurrent CSF3R mutation Q776* in 25% of cases, and a potential-germline mutation in a 20-year-old patient. Co-occurring mutations were often in epigenetic modifier and spliceosome. IDH/RUNX1 and tumor suppressor mutations were frequent in AML but absent in CNL/aCML. All CNL/aCML patients succumbed within 2-years of diagnosis. We demonstrate that CSF3R mutations are not restricted to CNL. CNL and aCML show similar clinicopathologic and molecular features, suggesting that CNL may be best classified as myelodysplastic/myeloproliferative neoplasm rather than myeloproliferative neoplasm.


Assuntos
Leucemia Neutrofílica Crônica , Mutação , Receptores de Fator Estimulador de Colônias , Humanos , Receptores de Fator Estimulador de Colônias/genética , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Leucemia Neutrofílica Crônica/genética , Leucemia Neutrofílica Crônica/patologia , Estudos Retrospectivos , Adulto , Adulto Jovem , Idoso de 80 Anos ou mais , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Análise Mutacional de DNA , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/genética , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/patologia , Predisposição Genética para Doença , Biomarcadores Tumorais/genética , Fenótipo
18.
Blood Cancer Discov ; 5(4): 276-297, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713018

RESUMO

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.


Assuntos
Calgranulina B , Cromossomos Humanos Par 8 , Transtornos Mieloproliferativos , Proteínas Proto-Oncogênicas c-myc , Trissomia , Cromossomos Humanos Par 8/genética , Humanos , Trissomia/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Animais , Camundongos , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Mielofibrose Primária/metabolismo , Transdução de Sinais/genética
19.
Leuk Res ; 142: 107518, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744144

RESUMO

We conducted a phase 1 study evaluating 3 dose levels of quizartinib (30 mg, 40 mg or 60 mg) in combination with azacitidine for HMA-naïve or relapsed/refractory MDS or MDS/MPN with FLT3 or CBL mutations. Overall, 12 patients (HMA naïve: n=9, HMA failure: n=3) were enrolled; 7 (58 %) patients had FLT3 mutations and 5 (42 %) had CBL mutations. The maximum tolerated dose was not reached. Most common grade 3-4 treatment-emergent adverse events were thrombocytopenia (n=5, 42 %), anemia (n=4, 33 %), lung infection (n=2, 17 %), skin infection (n=2, 17 %), hyponatremia (n=2, 17 %) and sepsis (n=2, 17 %). The overall response rate was 83 % with median relapse-free and overall survivals of 15.1 months (95 % CI 0.0-38.4 months) and 17.5 months (95 % CI NC-NC), respectively. FLT3 mutation clearance was observed in 57 % (n=4) patients. These data suggest quizartinib is safe and shows encouraging activity in FLT3-mutated MDS and MDS/MPN. This study is registered at Clinicaltrials.gov as NCT04493138.


Assuntos
Azacitidina , Benzotiazóis , Mutação , Síndromes Mielodisplásicas , Compostos de Fenilureia , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Benzotiazóis/administração & dosagem , Benzotiazóis/uso terapêutico , Benzotiazóis/efeitos adversos , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/uso terapêutico , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Azacitidina/uso terapêutico , Idoso de 80 Anos ou mais , Proteínas Proto-Oncogênicas c-cbl/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA