Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.515
Filtrar
1.
Part Fibre Toxicol ; 21(1): 18, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566142

RESUMO

Micro- and nanoplastic particles (MNP) are omnipresent as either pollution or intentionally used in consumer products, released from packaging or even food. There is an exponential increase in the production of plastics. With the realization of bioaccumulation in humans, toxicity research is quickly expanding. There is a rapid increase in the number of papers published on the potential implications of exposure to MNP which necessitates a call for quality criteria to be applied when doing the research. At present, most papers on MNP describe the effects of commercially available polymer (mostly polystyrene) beads that are typically not the MNP of greatest concern. This is not a fault of the research community, necessarily, as the MNPs to which humans are exposed are usually not available in the quantities needed for toxicological research and innovations are needed to supply environmentally-relevant MNP models. In addition, like we have learned from decades of research with particulate matter and engineered nanomaterials, sample physicochemical characteristics and preparation can have major impacts on the biological responses and interpretation of the research findings. Lastly, MNP dosimetry may pose challenges as (1) we are seeing early evidence that plastics are already in the human body at quite high levels that may be difficult to achieve in acute in vitro studies and (2) plastics are already in the diets fed to preclinical models. This commentary highlights the pitfalls and recommendations for particle and fibre toxicologists that should be considered when performing and disseminating the research.


Assuntos
Microplásticos , Nanoestruturas , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos , Material Particulado/toxicidade
2.
Medicine (Baltimore) ; 103(14): e37672, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579096

RESUMO

Myocardial infarction has been considered the top cause of mortality globally. Numerous studies investigated the biological application of smart nanomaterials in myocardial infarction. Our study aimed to provide an overview of this area through bibliography research. Literature related to the biological application of nanomaterials was retrieved from the web of science core collection database. Bibliography analysis was performed using Microsoft Excel, VOSviewer, Citespace, and the R package "bibliometrix." A total of 1226 publications were included. The USA, China, and India carried out the most of studies. Harvard University is the most productive institution. Matthias Nahrendorf ranked first in article volume and also owned the highest impact. Keyword burst analysis indicated the frontiers and hotspots to be gold nanoparticles and iron oxide nanoparticles. This bibliography analysis provides a comprehensive overview of uncovered current research trends and emerging hotspots of nanomaterials' biological application in myocardial infarction, thus inspiring further investigations.


Assuntos
Nanopartículas Metálicas , Infarto do Miocárdio , Nanoestruturas , Humanos , Ouro , China
3.
Nat Commun ; 15(1): 3015, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589344

RESUMO

Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.


Assuntos
Nanoestruturas , Nanotecnologia , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Cinética
4.
Proc Natl Acad Sci U S A ; 121(16): e2321498121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593077

RESUMO

In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (Encapsulation) and PA nanostructures + free LJC (Combination). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the Combination broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the Encapsulation provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the Encapsulation strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.


Assuntos
Anti-Infecciosos , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanoestruturas/química
5.
Arch Microbiol ; 206(4): 199, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563993

RESUMO

Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.


Assuntos
Portadores de Fármacos , Nanoestruturas , Humanos , Sistemas de Liberação de Medicamentos , Cicatrização , Inflamação
6.
Artigo em Inglês | MEDLINE | ID: mdl-38479982

RESUMO

Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanofibras , Nanoestruturas , Nanofibras/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Polímeros/química
7.
Arch Microbiol ; 206(4): 158, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480540

RESUMO

Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Carbono
8.
Artigo em Inglês | MEDLINE | ID: mdl-38456351

RESUMO

Nanomedicine, an interdisciplinary field combining nanotechnology and medicine, has gained immense attention in recent years due to its potential in revolutionizing healthcare. India, being an emerging hub for scientific research and development, has made significant strides in nanomedicine research. This special issue is dedicated to the exciting research that are being conducted by the leading Indian scientists in various Indian institutions. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanomedicina , Nanoestruturas , Nanotecnologia , Sistemas de Liberação de Medicamentos , Índia
9.
Adv Food Nutr Res ; 108: 135-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38460998

RESUMO

Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.


Assuntos
Embalagem de Alimentos , Nanoestruturas , Reciclagem , Alimentos , Resíduos Industriais
10.
AAPS PharmSciTech ; 25(3): 57, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472545

RESUMO

Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.


Assuntos
Ácido Betulínico , Nanoestruturas , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Portadores de Fármacos/uso terapêutico , Psoríase/tratamento farmacológico , Lipídeos , Tamanho da Partícula
11.
Crit Rev Biomed Eng ; 52(3): 17-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523439

RESUMO

An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
12.
Food Res Int ; 182: 114148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519178

RESUMO

In this current study, the internal structure of nanostructured lipid carriers was modulated by phospholipids (lecithin PC, hydrogenated soybean phospholipid HPC) and solid lipids to achieve stable encapsulation of citral. The presence of high melting point HPC could construct α-crystalline type with more lattice defects and effectively inhibit ß-ization. The HPC group could maintain the particle size at 155.9-186.9 nm, the polydispersity index (PDI) at 0.182-0.321, the Zeta potential at -57.58 mV to -49.35 mV and the retention rate of citral at 91.33-98.49 % in the acidic environments of 2 mM and 20 mM hydrochloric acid solutions. The recrystallization index (RI) of NLC increased with the number of solid lipid ester bonds (from 3.57 % to 16.58 % in the PC group and from 0.82 % to 12.47 % in the HPC group). The results illustrated that the number of solid lipid ester bonds and the melting point of phospholipids affected crystallinity of the lipid matrix and thus the stability of encapsulated citral. Hydrogenated phospholipid with high melting points was more beneficial in stabilizing citral. The present study improved the acidic stability of citral and provided a new thought for the application of citral in acidic beverages.


Assuntos
Monoterpenos Acíclicos , Nanoestruturas , Fosfolipídeos , Portadores de Fármacos/química , Nanoestruturas/química , Ésteres
13.
ACS Nano ; 18(11): 7711-7738, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38427687

RESUMO

Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.


Assuntos
Nanopartículas , Nanoestruturas , Sepse , Humanos , Nanotecnologia/métodos , Nanoestruturas/uso terapêutico , Nanopartículas/uso terapêutico , Diagnóstico por Imagem , Sepse/diagnóstico , Sepse/terapia
14.
ACS Nano ; 18(11): 7688-7710, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38436232

RESUMO

Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.


Assuntos
Matriz Extracelular , Nanoestruturas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Engenharia Tecidual , Adesão Celular
15.
Anal Chem ; 96(11): 4377-4384, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442207

RESUMO

Low number of circulating tumor cells (CTCs) in the blood samples and time-consuming properties of the current CTC isolation methods for processing a small volume of blood are the biggest obstacles to CTC usage in practice. Therefore, we aimed to design a CTC dialysis system with the ability to process cancer patients' whole blood within a reasonable time. Two strategies were employed for developing this dialysis setup, including (i) synthesizing novel in situ core-shell Cu ferrites consisting of the Cu-CuFe2O4 core and the MIL-88A shell, which are targeted by the anti-HER2 antibody for the efficient targeting and trapping of CTCs; and (ii) fabricating a microfluidic system containing a three-dimensional (3D)-printed microchannel filter composed of a polycaprolactone/Fe3O4 nanoparticle composite with pore diameter less than 200 µm on which a high-voltage magnetic field is focused to enrich and isolate the magnetic nanoparticle-targeted CTCs from a large volume of blood. The system was assessed in different aspects including capturing the efficacy of the magnetic nanoparticles, CTC enrichment and isolation from large volumes of human blood, side effects on blood cells, and the viability of CTCs after isolation for further analysis. Under the optimized conditions, the CTC dialysis system exhibited more than 80% efficacy in the isolation of CTCs from blood samples. The isolated CTCs were viable and were able to proliferate. Moreover, the CTC dialysis system was safe and did not cause side effects on normal blood cells. Taken together, the designed CTC dialysis system can process a high volume of blood for efficient dual diagnostic and therapeutic purposes.


Assuntos
Compostos Férricos , Nanoestruturas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Microfluídica , Medicina de Precisão , Separação Celular/métodos , Diálise Renal , Impressão Tridimensional , Fenômenos Magnéticos , Linhagem Celular Tumoral
16.
Anal Chem ; 96(11): 4605-4611, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457774

RESUMO

Microscopic temperature imaging holds significant importance in various fields, particularly in the development of nanomaterials for photothermal therapy (PTT). In this study, we present an analytical method to probe cellular temperature based on chemical kinetics and additional luminescence quenching by photoswitchable naphthopyrans. Taking advantage of the rapid ring-closing reaction of naphthopyran, temperature sensing was realized with a linear relationship between the logarithmic decay time constant (ln τ) and the reciprocal temperature (T-1). To create luminescent temperature nanosensors, we harnessed the ability of ring-opened naphthopyran to quench the luminescence of a semiconducting polymer, resulting in a diverse array of probes. Structural modifications on the naphthopyran also provided a way to fine-tune the sensitivity and response window of the nanosensors. The method allowed cellular temperature imaging on a cost-effective fluorescence microscopic setup. As an application, the temperature increase induced by gold nanorods (AuNRs) in cell lysosomes was successfully monitored, laying the foundation for a new class of photoswitchable nanosensors with promising biological applications.


Assuntos
Nanoestruturas , Nanotubos , Temperatura , Nanotubos/química , Diagnóstico por Imagem
17.
J Agric Food Chem ; 72(11): 5993-6005, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450613

RESUMO

Pseudocapacitive nanomaterials have recently gained significant attention in electrochemical biosensors due to their rapid response, long cycle life, high surface area, biomolecule compatibility, and superior energy storage capabilities. In our study, we introduce the potential of using Ni-NiO nanofilm's pseudocapacitive traits as transducer signals in electrochemical aptasensors. Capitalizing on the innate affinity between histidine and nickel, we immobilized histidine-tagged streptavidin (HTS) onto Ni-NiO-modified electrodes. Additionally, we employed a biolayer interferometry-based SELEX to generate biotinylated patulin aptamers. These aptamers, when placed on Ni-NiO-HTS surfaces, make a suitable biosensing platform for rapid patulin mycotoxin detection in apple juice using electrochemical amperometry in microseconds. The novelty lies in optimizing pseudocapacitive nanomaterials structurally and electrochemically, offering the potential for redox mediator-free electrochemical aptasensors. Proof-of-concept is conducted by applying this surface for the ultrasensitive detection of a model analyte, patulin mycotoxin. The aptamer-functionalized bioelectrode showed an excellent linear response (10-106 fg/mL) and an impressive detection limit (1.65 fg/mL, +3σ of blank signal). Furthermore, reproducibility tests yielded a low relative standard deviation of 0.51%, indicating the good performance of the developed biosensor. Real sample analysis in freshly prepared apple juice revealed no significant difference (P < 0.05) in current intensity between spiked and real samples. The sensor interface maintained excellent stability for up to 2 weeks (signal retention 96.45%). The excellent selectivity, stability, and sensitivity of the electrochemical aptasensor exemplify the potential for using nickel-based pseudocapacitive nanomaterials for a wide variety of electrochemical sensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Malus , Nanoestruturas , Patulina , Malus/química , Níquel/química , Histidina , Reprodutibilidade dos Testes , Nanoestruturas/química , Oxirredução , Técnicas Eletroquímicas , Limite de Detecção , Aptâmeros de Nucleotídeos/química
18.
Nano Lett ; 24(11): 3532-3540, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457281

RESUMO

Developing dynamic nanostructures for in situ regulation of biological processes inside living cells is of great importance in biomedical research. Herein we report the cascaded assembly of Y-shaped branched DNA nanostructure (YDN) during intracellular autophagy. YDN contains one arm with semi-i-motif sequence and Cy3-BHQ2, and another arm with an apurinic/apyrimidinic (AP) site and Cy5-BHQ3. Upon uptake by cancer cells, intermolecular i-motif structures are formed in response to lysosomal H+, causing the formation of YDN-dimer and the recovery of Cy3 fluorescence; when escapes occur from the lysosome to the cytoplasm, the YDN-dimer responds to the overexpressed APE1, leading to the assembly of YDN into the DNA network and the fluorescence recovery of Cy5. Simultaneously, the cascaded assembly activates autophagy, and thus the process of assembly of YDN and autophagy flux can be spatiotemporally coupled. This work illustrates the potential of DNA nanostructures for the in situ regulation of intracellular dynamic events with spatiotemporal control.


Assuntos
Carbocianinas , Nanoestruturas , Neoplasias , DNA/química , Nanoestruturas/química , Reparo do DNA , Autofagia , Neoplasias/genética
19.
J Agric Food Chem ; 72(11): 5526-5541, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457666

RESUMO

Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.


Assuntos
Nanoestruturas , Peptídeos , Peptídeos/química , Nanoestruturas/química , Termodinâmica
20.
Sci Rep ; 14(1): 6476, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499606

RESUMO

Ordered, quasi-ordered, and even disordered nanostructures can be identified as constituent components of several protists, plants and animals, making possible an efficient manipulation of light for intra- and inter- species communication, camouflage, or for the enhancement of primary production. Diatoms are ubiquitous unicellular microalgae inhabiting all the aquatic environments on Earth. They developed, through tens of millions of years of evolution, ultrastructured silica cell walls, the frustules, able to handle optical radiation through multiple diffractive, refractive, and wave-guiding processes, possibly at the basis of their high photosynthetic efficiency. In this study, we employed a range of imaging, spectroscopic and numerical techniques (including transmission imaging, digital holography, photoluminescence spectroscopy, and numerical simulations based on wide-angle beam propagation method) to identify and describe different mechanisms by which Pleurosigma strigosum frustules can modulate optical radiation of different spectral content. Finally, we correlated the optical response of the frustule to the interaction with light in living, individual cells within their aquatic environment following various irradiation treatments. The obtained results demonstrate the favorable transmission of photosynthetic active radiation inside the cell compared to potentially detrimental ultraviolet radiation.


Assuntos
Diatomáceas , Nanoestruturas , Animais , Diatomáceas/fisiologia , Raios Ultravioleta , Nanoestruturas/química , Fotossíntese , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...