Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int. j. morphol ; 41(6): 1816-1823, dic. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1528777

RESUMO

SUMMARY: To evaluate the anti-cancer effects of yeast extract on resistant cells, autophagy and necroptosis were investigated in 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Further underlying characteristics on drug resistance were evaluated, focused on ERK-RSK-ABCG2 linkage. SNU-C5 and 5-FU resistant SNU-C5 (SNU-C5/5-FUR) colorectal cancer cells were adopted for cell viability assay and Western blotting to examine the anti-cancer effects of yeast extract. Yeast extract induced autophagy in SNU-C5 cells with increased Atg7, Atg12-5 complex, Atg16L1, and LC3 activation (LC3-II/LC3-I), but little effects in SNU-C5/5-FUR cells with increased Atg12-5 complex and Atg16L1. Both colorectal cancer cells did not show necroptosis after yeast extract treatment. Based on increased ABCG2 and RSK expression after yeast extract treatment, drug resistance mechanisms were further evaluated. As compared to wild type, SNU-C5/5-FUR cells showed more ABCG2 expression, less RSK expression, and less phosphorylation of ERK. ABCG2 inhibitor, Ko143, treatment induces following changes: 1) more sensitivity at 500 mM 5-FU, 2) augmented proliferation, and 3) less phosphorylation of ERK. These results suggest that protective autophagy in SNU-C5/5-FUR cells with increased ABCG2 expression might be candidate mechanisms for drug resistance. As the ERK responses were different from each stimulus, the feasible mechanisms among ERK-RSK-ABCG2 should be further investigated in 5-FU-resistant CRC cells.


Para evaluar los efectos anticancerígenos del extracto de levadura en células resistentes, se investigaron la autofagia y la necroptosis en células de cáncer colorrectal resistentes al 5-fluorouracilo (5-FU). Además se evaluaron otras características subyacentes de la resistencia a los medicamentos centrándose en el enlace ERK-RSK-ABCG2. Se usaron células de cáncer colorrectal SNU-C5 (SNU-C5/5-FUR) resistentes a SNU-C5 y 5- FU para el ensayo de viabilidad celular y la transferencia Western para examinar los efectos anticancerígenos del extracto de levadura. El extracto de levadura indujo autofagia en células SNU-C5 con mayor activación de Atg7, complejo Atg12-5, Atg16L1 y LC3 (LC3-II/LC3-I), pero pocos efectos en células SNU-C5/5-FUR con aumento de Atg12-5 complejo y Atg16L1. Ambas células de cáncer colorrectal no mostraron necroptosis después del tratamiento con extracto de levadura. Se evaluaron los mecanismos de resistencia a los medicamentos. en base al aumento de la expresión de ABCG2 y RSK después del tratamiento con extracto de levadura.En comparación con las de tipo salvaje, las células SNU-C5/5-FUR mostraron más expresión de ABCG2, menos expresión de RSK y menos fosforilación de ERK. El tratamiento con inhibidor de ABCG2, Ko143, induce los siguientes cambios: 1) más sensibilidad a 5-FU 500 mM, 2) proliferación aumentada y 3) menos fosforilación de ERK. Estos resultados sugieren que la autofagia protectora en células SNU-C5/5-FUR con mayor expresión de ABCG2 podría ser un mecanismo candidato para la resistencia a los medicamentos. Como las respuestas de ERK fueron diferentes de cada estímulo, los mecanismos factibles entre ERK-RSK- ABCG2 deberían investigarse más a fondo en células CCR resistentes a 5-FU.


Assuntos
Autofagia , Extratos Vegetais/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/farmacologia , Leveduras , Células Tumorais Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Western Blotting , Resistencia a Medicamentos Antineoplásicos , Proteínas Quinases S6 Ribossômicas 90-kDa , Eletroforese , Fluoruracila , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Necroptose
2.
Clin Exp Immunol ; 214(3): 328-340, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37455655

RESUMO

Usually, the massive elimination of cells under steady-state conditions occurs by apoptosis, which is also acknowledged to explain the loss of enterocytes in the small intestine of celiac disease (CD) patients. However, little is known about the role of proinflammatory cell death pathways in CD. Here, we have used confocal microscopy, western blot, and RT-qPCR analysis to assess the presence of regulated cell death pathways in the duodenum of CD patients. We found an increased number of dead (TUNEL+) cells in the lamina propria of small intestine of CD patients, most of them are plasma cells (CD138+). Many dying cells expressed FAS and were in close contact with CD3+ T cells. Caspase-8 and caspase-3 expression was increased in CD, confirming the activation of apoptosis. In parallel, caspase-1, IL-1ß, and GSDMD were increased in CD samples indicating the presence of inflammasome-dependent pyroptosis. Necroptosis was also present, as shown by the increase of RIPK3 and phosphorylate MLKL. Analysis of published databases confirmed that CD has an increased expression of regulated cell death -related genes. Together, these results reveal that CD is characterized by cell death of different kinds. In particular, the presence of proinflammatory cell death pathways may contribute to mucosal damage.


Assuntos
Doença Celíaca , Piroptose , Humanos , Piroptose/genética , Necroptose/genética , Apoptose/genética , Morte Celular
3.
Clin Exp Pharmacol Physiol ; 50(9): 738-748, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321597

RESUMO

Brazilin possesses anticancer effects, but the mechanisms are poorly understood. This study investigated the mechanisms of brazilin-induced cell death in the T24 human bladder cancer cell line. Low serum cell culture and the lactate dehydrogenase assay were used to confirm the antitumor effect of brazilin. Annexin V and propidium iodide double staining, transmission electron microscopy, fluo-3-AM assay for Ca2+ mobilization and caspase activity assay were performed to identify the type of cell death after brazilin treatment. Mitochondria membrane potentials were measured using JC-1. Quantitative real-time polymerase chain reaction and western blot analyses were performed to verify the expression of the necroptosis-related genes and proteins receptor interacting protein 1 (RIP1), RIP3 and mixed lineage kinase domain-like (MLKL). The results showed that brazilin induced necrosis in T24 cells and upregulated the mRNA and protein levels of RIP1, RIP3 and MLKL and Ca2+ influx. The necroptosis-mediated cell death was rescued by the necroptosis inhibitor necrostatin-1 (Nec-1), but not by the apoptosis inhibitor z-VAD-fmk. Brazilin repressed caspase 8 expression and decreased the mitochondrial membrane potentials; both effects were partially reversed by Nec-1. Brazilin induced physiological and morphological changes in T24 cells and RIP1/RIP3/MLKL-mediated necroptosis might be involved. In conclusion, the results confirm the involvement of necroptosis in brazilin-induced cell death and suggest that brazilin could be explored as an anticancer agent against bladder cancer.


Assuntos
Necroptose , Neoplasias da Bexiga Urinária , Humanos , Necrose , Morte Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose
4.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175219

RESUMO

Glioblastoma (GBM) is an incurable primary brain tumor with a poor prognosis. Resection, radiation therapy, and temozolomide (TMZ) are insufficient to increase survival, making the treatment limited. Thus, the search for more effective and specific treatments is essential, making plants a promising source for elucidating new anti-glioblastoma compounds. Accordingly, this study investigated the effects of four fractions of hexane and ethyl acetate extract of Annona coriacea Mart., enriched with acetogenins, against GBM cell lines. All four fractions were selectively cytotoxic to GBM cells when compared to TMZ. Moreover, A. coriacea fractions delayed cell migration; reduced cytoplasmic projections, the metalloproteinase 2 (MMP-2) activity; and induced morphological changes characteristic of necroptosis, possibly correlated with the increase in receptor-interacting protein kinase 1 and 3 (RIP-1 and RIP-3), apoptosis-inducing factor (AIF), and the non-activation of cleaved caspase 8. The present findings reinforce that fractions of A. coriacea Mart. should be considered for more studies focusing treatment of GBM.


Assuntos
Annona , Neoplasias Encefálicas , Glioblastoma , Humanos , Metaloproteinase 2 da Matriz , Acetogeninas/farmacologia , Necroptose , Glioblastoma/metabolismo , Temozolomida/farmacologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Apoptose
5.
Photochem Photobiol Sci ; 22(6): 1341-1356, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36867369

RESUMO

Prostate cancer is the most common cancer in American men, aside from skin cancer. As an alternative cancer treatment, photodynamic laser therapy (PDT) can be used to induce cell death. We evaluated the PDT effect, using methylene blue as a photosensitizer, in human prostate tumor cells (PC3). PC3 were subjected to four different conditions: DMEM (control); laser treatment (L-660 nm, 100 mW, 100 J.cm-2); methylene blue treatment (MB-25 µM, 30 min), and MB treatment followed by low-level red laser irradiation (MB-PDT). Groups were evaluated after 24 h. MB-PDT treatment reduced cell viability and migration. However, because MB-PDT did not significantly increase the levels of active caspase-3 and BCL-2, apoptosis was not the primary mode of cell death. MB-PDT, on the other hand, increased the acid compartment by 100% and the LC3 immunofluorescence (an autophagy marker) by 254%. Active MLKL level, a necroptosis marker, was higher in PC3 cells after MB-PDT treatment. Furthermore, MB-PDT resulted in oxidative stress due to a decrease in total antioxidant potential, catalase levels, and increased lipid peroxidation. According to these findings, MB-PDT therapy is effective at inducing oxidative stress and reducing PC3 cell viability. In such therapy, necroptosis is also an important mechanism of cell death triggered by autophagy.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Fotoquimioterapia/métodos , Sobrevivência Celular , Azul de Metileno/farmacologia , Necroptose , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico
6.
Aging Cell ; 22(5): e13814, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973898

RESUMO

Age is the main risk factor for the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction, and cognitive disabilities in humans, primates, rodents, and invertebrates. Necroptosis mediates degeneration of injured axons, but whether necroptosis triggers neurodegeneration and cognitive impairment along aging is unknown. Here, we show that the loss of the necroptotic effector Mlkl was sufficient to delay age-associated axonal degeneration and neuroinflammation, protecting against decreased synaptic transmission and memory decline in aged mice. Moreover, short-term pharmacologic inhibition of necroptosis targeting RIPK3 in aged mice, reverted structural and functional hippocampal impairment, both at the electrophysiological and behavioral level. Finally, a quantitative proteomic analysis revealed that necroptosis inhibition leads to an overall improvement of the aged hippocampal proteome, including a subclass of molecular biofunctions associated with brain rejuvenation, such as long-term potentiation and synaptic plasticity. Our results demonstrate that necroptosis contributes to age-dependent brain degeneration, disturbing hippocampal neuronal connectivity, and cognitive function. Therefore, necroptosis inhibition constitutes a potential geroprotective strategy to treat age-related disabilities associated with memory impairment and cognitive decline.


Assuntos
Necroptose , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Idoso , Proteômica , Rejuvenescimento , Envelhecimento/fisiologia , Encéfalo , Transtornos da Memória
7.
Int Immunopharmacol ; 117: 109954, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870284

RESUMO

We analyzed the ability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) itself and SARS-CoV-2-IgG immune complexes to trigger human monocyte necroptosis. SARS-CoV-2 was able to induce monocyte necroptosis dependently of MLKL activation. Necroptosis-associated proteins (RIPK1, RIPK3 and MLKL) were involved in SARS-CoV-2N1 gene expression in monocytes. SARS-CoV-2 immune complexes promoted monocyte necroptosis in a RIPK3- and MLKL-dependent manner, and Syk tyrosine kinase was necessary for SARS-CoV-2 immune complex-induced monocyte necroptosis, indicating the involvement of Fcγ receptors on necroptosis. Finally, we provide evidence that elevated LDH levels as a marker of lytic cell death are associated with COVID-19 pathogenesis.


Assuntos
Complexo Antígeno-Anticorpo , COVID-19 , Humanos , Complexo Antígeno-Anticorpo/metabolismo , SARS-CoV-2 , Proteínas Quinases/metabolismo , Monócitos , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
8.
Photochem Photobiol Sci ; 22(4): 729-744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495407

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) are the fourth leading cause of death due to neoplasms. In view of the urgent need of effective treatments for PDAC, photodynamic therapy (PDT) appears as a promising alternative. However, its efficacy against PDAC and the mechanisms involved in cell death induction remain unclear. In this study, we set out to evaluate PDT's cytotoxicity using methylene blue (MB) as a photosensitizer (PS) (MB-PDT) and to evaluate the contribution of necroptosis in its effect in human PDAC cells. Our results demonstrated that MB-PDT induced significant death of different human PDAC models presenting two different susceptibility profiles. This effect was independent of MB uptake or its subcellular localization. We found that the ability of triggering necroptosis was determinant to increase the treatment efficiency. Analysis of single cell RNA-seq data from normal and neoplastic human pancreatic tissues showed that specific necroptosis proteins RIPK1, RIPK3 and MLKL presented significant higher expression levels in cells displaying a transformed phenotype providing further support to the use of approaches that activate necroptosis, like MB-PDT, as useful adjunct to surgery of PDAC to tackle the problem of microscopic residual disease as well as to minimize the chance of local and metastatic recurrence.


Assuntos
Adenocarcinoma , Fotoquimioterapia , Humanos , Azul de Metileno/farmacologia , Necroptose , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Apoptose , Neoplasias Pancreáticas
9.
Mol Neurobiol ; 59(11): 6632-6651, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35980566

RESUMO

Quinolinic acid (QUIN) is an agonist of N-methyl-D-aspartate receptor (NMDAr) used to study the underlying mechanism of excitotoxicity in animal models. There is evidence indicating that impairment in autophagy at early times contributes to cellular damage in excitotoxicity; however, the status of autophagy in QUIN model on day 7 remains unexplored. In this study, the ultrastructural analysis of subcellular compartments and the status of autophagy, necroptosis, and apoptosis in the striatum of rats administered with QUIN (120 nmol and 240 nmol) was performed on day 7. QUIN induced circling behavior, neurodegeneration, and cellular damage; also, it promoted swollen mitochondrial crests, spherical-like morphology, and mitochondrial fragmentation; decreased ribosomal density in the rough endoplasmic reticulum; and altered the continuity of myelin sheaths in axons with separation of the compact lamellae. Furthermore, QUIN induced an increase and a decrease in ULK1 and p-70-S6K phosphorylation, respectively, suggesting autophagy activation; however, the increased microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and sequestosome-1/p62 (SQSTM1/p62), the coexistence of p62 and LC3 in the same structures, and the decrease in Beclin 1 and mature cathepsin D also indicates a blockage in autophagy flux. Additionally, QUIN administration increased tumor necrosis factor alpha (TNFα) and receptor-interacting protein kinase 3 (RIPK3) levels and its phosphorylation (p-RIPK3), as well as decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) levels and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting an activation of necroptosis and apoptosis, respectively. These results suggest that QUIN activates the autophagy, but on day 7, it is blocked and organelle and cellular damage, neurodegeneration, and behavior alterations could be caused by necroptosis and apoptosis activation.


Assuntos
Ácido Quinolínico , Fator de Necrose Tumoral alfa , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Catepsina D/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Necroptose , Ácido Quinolínico/toxicidade , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Sequestossoma-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Acta Cir Bras ; 37(3): e370301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584533

RESUMO

PURPOSE: Spontaneous intracerebral hemorrhage (ICH) is a major public health problem with a huge economic burden worldwide. Ulinastatin (UTI), a serine protease inhibitor, has been reported to be anti-inflammatory, immune regulation, and organ protection by reducing reactive oxygen species production, and inflammation. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the neuroprotection of UTI in ICH has not been confirmed, and the potential mechanism is unclear. The present study aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in ICH-induced EBI in a C57BL/6 mouse model. METHODS: The neurological score, brain water content, neuroinflammatory cytokine levels, and neuronal damage were evaluated. The anti-inflammation effectiveness of UTI in ICH patients also was evaluated. RESULTS: UTI treatment markedly increased the neurological score, alleviate the brain edema, decreased the inflammatory cytokine TNF-α, interleukin­1ß (IL­1ß), IL­6, NF­κB levels, and RIP1/RIP3, which indicated that UTI-mediated inhibition of neuroinflammation, and necroptosis alleviated neuronal damage after ICH. UTI also can decrease the inflammatory cytokine of ICH patients. The neuroprotective capacity of UTI is partly dependent on the MAPK/NF-κB signaling pathway. CONCLUSIONS: UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation, and necroptosis.


Assuntos
Lesões Encefálicas , Sistema de Sinalização das MAP Quinases , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Glicoproteínas , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Necroptose , Doenças Neuroinflamatórias/metabolismo
11.
Acta Neuropathol Commun ; 10(1): 31, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264247

RESUMO

Alzheimer's disease (AD) is a major adult-onset neurodegenerative condition with no available treatment. Compelling reports point amyloid-ß (Aß) as the main etiologic agent that triggers AD. Although there is extensive evidence of detrimental crosstalk between Aß and microglia that contributes to neuroinflammation in AD, the exact mechanism leading to neuron death remains unknown. Using postmortem human AD brain tissue, we show that Aß pathology is associated with the necroptosis effector pMLKL. Moreover, we found that the burden of Aß oligomers (Aßo) correlates with the expression of key markers of necroptosis activation. Additionally, inhibition of necroptosis by pharmacological or genetic means, reduce neurodegeneration and memory impairment triggered by Aßo in mice. Since microglial activation is emerging as a central driver for AD pathogenesis, we then tested the contribution of microglia to the mechanism of Aßo-mediated necroptosis activation in neurons. Using an in vitro model, we show that conditioned medium from Aßo-stimulated microglia elicited necroptosis in neurons through activation of TNF-α signaling, triggering extensive neurodegeneration. Notably, necroptosis inhibition provided significant neuronal protection. Together, these findings suggest that Aßo-mediated microglia stimulation in AD contributes to necroptosis activation in neurons and neurodegeneration. As necroptosis is a druggable degenerative mechanism, our findings might have important therapeutic implications to prevent the progression of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Transtornos da Memória/patologia , Camundongos , Microglia/patologia , Necroptose
12.
Acta Cir Bras ; 36(10): e361002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34817023

RESUMO

PURPOSE: Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. METHODS: In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). RESULTS: The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3ß signaling pathway. CONCLUSIONS: CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.


Assuntos
Necroptose , Fármacos Neuroprotetores , Aminoácidos , Animais , Apoptose , Hemorragia Cerebral/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
Adv Exp Med Biol ; 1301: 123-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370290

RESUMO

The past decades witnessed the discovery of novel modes of cell death, such as ferroptosis, pyroptosis and necroptosis, all of them presenting common necrotic traits. In this chapter, we revisit the early discoveries that unveiled necroptosis as a distinct cell death mechanism. We describe necroptosis, its main regulators and their role in maintaining cellular homeostasis and in the disease state. We conclude by discussing its phenotypic similarities with ferroptosis and the possible crosstalk between these pathways.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Apoptose , Caspases/genética , Morte Celular , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
14.
Acta Cir Bras ; 36(4): e360406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076083

RESUMO

PURPOSE: To evaluate the effects of controlled decompression and rapid decompression, explore the potential mechanism, provide the theoretical basis for the clinical application, and explore the new cell death method in intracranial hypertension. METHODS: Acute intracranial hypertension was triggered in rabbits by epidural balloon compression. New Zealand white rabbits were randomly put into the sham group, the controlled decompression group, and the rapid decompression group. Brain water content, etc., was used to evaluate early brain injury. Western blotting and double immunofluorescence staining were used to detect necroptosis and apoptosis. RESULTS: Brain edema, neurological dysfunction, and brain injury appeared after traumatic brain injury (TBI). Compared with rapid decompression, brain water content was significantly decreased, neurological scores were improved by controlled decompression treatment. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Nissl staining showed neuron death decreased in the controlled decompression group. Compared with rapid decompression, it was also found that apoptosis-related protein caspase-3/ tumor necrosis factor (TNF)-a was reduced markedly in the brain cortex and serum, and the expression levels of necroptosis-related protein, receptor-interacting protein 1 (RIP1)/receptor-interacting protein 1 (RIP3) reduced significantly in the controlled decompression group. CONCLUSIONS: Controlled decompression can effectively reduce neuronal damage and cerebral edema after craniocerebral injury and, thus, protect the brain tissue by alleviating necroptosis and apoptosis.


Assuntos
Lesões Encefálicas , Hipertensão Intracraniana , Animais , Apoptose , Descompressão , Necroptose , Coelhos , Ratos , Ratos Sprague-Dawley
15.
Front Immunol ; 12: 631821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746968

RESUMO

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Assuntos
Morte Celular/imunologia , Neutrófilos/patologia , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Radicais Livres/metabolismo , Humanos , Necroptose/imunologia , Necrose/imunologia , Necrose/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Piroptose/imunologia , Receptores de Morte Celular/metabolismo
16.
Clin Transl Oncol ; 23(4): 738-749, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32734535

RESUMO

BACKGROUND: Despite recent progressions in the treatment of melanoma, the response to conventional therapies and the long-term survival in melanoma patients still remain poor. Recently, the use of nanoparticles (NPs) has been highlighted for promoting the chemotherapeutic effects of cytotoxic drugs in melanoma. The aim of this study is to mechanistically evaluate the potential of titanium dioxide (TiO2) nanoparticles (NPs) for enhancing chemotherapy effects in in vitro and in vivo models of murine melanoma. METHODS: The F10 melanoma cells were exposed to different concentrations of TiO2 NPs and/or cisplatin, then cell growth, cell viability, and cell death were evaluated. In parallel, C57BL/6 syngeneic melanoma mice were treated by TiO2 NPs and/or cisplatin, and then drug responses, tumor size and mice's organs were studied pathologically. Autophagy was examined by evaluating the formation of autophagosomes and gene expression levels of autophagy markers (ATG5 and ATG6) by fluorescent microscopy and qPCR, respectively. RESULTS: Nontoxic concentrations of TiO2 NPs (50 µg/ml) promote anti-proliferative and cytotoxic effects of cisplatin in F10 melanoma cells, which is mediated through the induction of autophagy and necrotic cell death. Whereas TiO2 NPs have no cytotoxic or metastatic effects in melanoma mice, its combination with cisplatin enhances drug responses (up to 50%), leading to higher inhibition of tumor growth compared with each monotherapy. CONCLUSION: The combination of TiO2 NP with cisplatin enhances chemotherapy response in both in vitro and in vivo melanoma models. In addition, autophagy plays an essential role during sensitizing melanoma cells to chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Cisplatino/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Nanopartículas/uso terapêutico , Titânio/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Autofagossomos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/genética , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Combinação de Medicamentos , Sinergismo Farmacológico , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Necroptose/efeitos dos fármacos , Tamanho da Partícula , Distribuição Aleatória , Baço/efeitos dos fármacos , Titânio/administração & dosagem , Carga Tumoral/efeitos dos fármacos
17.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303545

RESUMO

Respiratory syncytial virus (RSV) is the major cause of acute bronchiolitis in infants under 2 years old. Necroptosis has been implicated in the outcomes of respiratory virus infections. We report that RSV infection triggers necroptosis in primary mouse macrophages and human monocytes in a RIPK1-, RIPK3- and MLKL-dependent manner. Moreover, necroptosis pathways are harmful to RSV clearance from alveolar macrophages. Additionally, Ripk3-/- mice were protected from RSV-induced weight loss and presented with reduced viral loads in the lungs.Alveolar macrophage depletion also protected mice from weight loss and decreased lung RSV virus load. Importantly, alveolar macrophage depletion abolished the upregulation of Ripk3 and Mlkl gene expression induced by RSV infection in the lung tissue.Autocrine tumor necrosis factor (TNF)-mediated RSV-triggered macrophage necroptosis and necroptosis pathways were also involved in TNF secretion even when macrophages were committed to cell death, which can worsen lung injury during RSV infection. In line, Tnfr1-/- mice had a marked decrease in Ripk3 and Mlkl gene expression and a sharp reduction in the numbers of necrotic alveolar macrophages in the lungs. Finally, we provide evidence that elevated nasal levels of TNF are associated with disease severity in infants with RSV bronchiolitis.We propose that targeting TNF and/or the necroptotic machinery may be valuable therapeutic approaches to reduce the respiratory morbidity caused by RSV infection in young children.


Assuntos
Bronquiolite , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Macrófagos Alveolares , Camundongos , Necroptose
18.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200491, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249215

RESUMO

Abstract This study aimed to evaluate the toxic impact of hydro-alcoholic Allium jesdianum extract (AJE) on the growth of HT-29 human colorectal cancer cell line. Phytochemical analysis using gas chromatography and mass spectroscopy (GCMS) was done to determine the bioactive components of AJE. HT-29 cells exposed to 0 (control), 25, 50, and 100 ��g/mL of AJE for 48 hours. Cell survival, colony numbers, flow cytometry, oxidative stress, and gene expression were examined to evaluate the toxic impacts of the AJE. Twelve different phyto-constituents with peak areas were determined by the GCMS analysis. The major compounds were Allicin and α-Pinene. AJE considerably reduced the viability and colony numbers of the HT-29 cells. The AJE concentration-dependently increased necrosis, but not apoptosis in the HT-29 cells. AJE upregulated the expression of necroptosis-associated genes including RIPK1, RIPK3, and MLKL in a concentration-dependent manner. AJE also dose-dependently enhanced MDA contents and reactive oxygen species (ROS) level and diminished antioxidant enzyme level in the HT-29 cells. These data collectively indicated that AJE prevented the growth of the HT-29 cells by inducing oxidative stress, and activation necroptosis signaling pathways.


Assuntos
Humanos , Allium/toxicidade , Neoplasias Colorretais , Estresse Oxidativo , Necroptose
19.
Acta cir. bras ; Acta cir. bras;36(10): e361002, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1349867

RESUMO

ABSTRACT Purpose: Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. Methods: In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). Results: The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. Conclusions: CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.


Assuntos
Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Necroptose , Transdução de Sinais , Hemorragia Cerebral/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuroproteção , Glicogênio Sintase Quinase 3 beta/farmacologia , Aminoácidos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
20.
Acta cir. bras ; Acta cir. bras;36(4): e360406, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1248544

RESUMO

ABSTRACT Purpose To evaluate the effects of controlled decompression and rapid decompression, explore the potential mechanism, provide the theoretical basis for the clinical application, and explore the new cell death method in intracranial hypertension. Methods Acute intracranial hypertension was triggered in rabbits by epidural balloon compression. New Zealand white rabbits were randomly put into the sham group, the controlled decompression group, and the rapid decompression group. Brain water content, etc., was used to evaluate early brain injury. Western blotting and double immunofluorescence staining were used to detect necroptosis and apoptosis. Results Brain edema, neurological dysfunction, and brain injury appeared after traumatic brain injury (TBI). Compared with rapid decompression, brain water content was significantly decreased, neurological scores were improved by controlled decompression treatment. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Nissl staining showed neuron death decreased in the controlled decompression group. Compared with rapid decompression, it was also found that apoptosis-related protein caspase-3/ tumor necrosis factor (TNF)-a was reduced markedly in the brain cortex and serum, and the expression levels of necroptosis-related protein, receptor-interacting protein 1 (RIP1)/receptor-interacting protein 1 (RIP3) reduced significantly in the controlled decompression group. Conclusions Controlled decompression can effectively reduce neuronal damage and cerebral edema after craniocerebral injury and, thus, protect the brain tissue by alleviating necroptosis and apoptosis.


Assuntos
Lesões Encefálicas , Hipertensão Intracraniana , Coelhos , Ratos Sprague-Dawley , Apoptose , Descompressão , Necroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA