Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979511

RESUMO

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Assuntos
Fímbrias Bacterianas , Osmorregulação , Trealose , Bexiga Urinária , Infecções Urinárias , Animais , Trealose/metabolismo , Camundongos , Bexiga Urinária/microbiologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Animais de Doenças , Feminino , Pressão Osmótica , Escherichia coli Extraintestinal Patogênica/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Ureia/metabolismo , Trealase/metabolismo , Trealase/genética , Deleção de Genes , Glucose/metabolismo
2.
Sci Rep ; 14(1): 16061, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992190

RESUMO

Rhizome rot is a destructive soil-borne disease of Polygonatum kingianum and adversely affects the yield and sustenance of the plant. Understanding how the causal fungus Fusarium oxysporum infects P. kingianum may suggest effective control measures against rhizome rot. In germinating conidia of infectious F. oxysporum, expression of the zinc finger transcription factor gene Zfp1, consisting of two C2H2 motifs, was up-regulated. To characterize the critical role of ZFP1, we generated independent deletion mutants (zfp1) and complemented one mutant with a transgenic copy of ZFP1 (zfp1 tZFP1). Mycelial growth and conidial production of zfp1 were slower than those of wild type (ZFP1) and zfp1 tZFP1. Additionally, a reduced inhibition of growth suggested zfp1 was less sensitive to conditions promoting cell wall and osmotic stresses than ZFP1 and zfp1 tZFP1. Furthermore pathogenicity tests suggested a critical role for growth of zfp1 in infected leaves and rhizomes of P. kingianum. Thus ZFP1 is important for mycelial growth, conidiation, osmoregulation, and pathogenicity in P. kingianum.


Assuntos
Proteínas Fúngicas , Fusarium , Osmorregulação , Doenças das Plantas , Polygonatum , Esporos Fúngicos , Fatores de Transcrição , Dedos de Zinco , Fusarium/patogenicidade , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Virulência/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polygonatum/microbiologia , Regulação Fúngica da Expressão Gênica
3.
Environ Sci Pollut Res Int ; 31(32): 44717-44729, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954342

RESUMO

As a widely used pesticide, abamectin could be a threat to nontarget organisms. In this study, the toxic mechanism of abamectin on osmoregulation in Procambarus clarkii was explored for the first time. The results of this study showed that with increasing abamectin concentration, the membrane structures of gill filaments were damaged, with changes in ATPase activities, transporter contents, biogenic amine contents, and gene expression levels. The results of this study indicated that at 0.2 mg/L abamectin, ion diffusion could maintain osmoregulation. At 0.4 mg/L abamectin, passive transport was inhibited due to damage to the membrane structures of gill filaments, and active transport needed to be enhanced for osmoregulation. At 0.6 mg/L abamectin, the membrane structures of gill filaments were seriously damaged, and the expression level of osmoregulation-related genes decreased, but the organisms were still mobilizing various transporters, ATPases, and biogenic amines to address abamectin stress. This study provided a theoretical basis for further study of the effects of contaminations in aquatic environment on the health of crustaceans.


Assuntos
Astacoidea , Ivermectina , Osmorregulação , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Astacoidea/efeitos dos fármacos , Astacoidea/fisiologia , Poluentes Químicos da Água/toxicidade , Brânquias/efeitos dos fármacos
4.
Ecol Evol Physiol ; 97(3): 164-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875141

RESUMO

AbstractFreshwater salinity regimes vary naturally and are changing in response to anthropogenic activities. Few insect species tolerate saline waters, and biodiversity losses are associated with increasing salinity in freshwater. We used radiotracers (22Na, 35SO4, and 45Ca) to examine ion uptake rates across concentration gradients in mayflies (Ephemeroptera), caddis flies (Trichoptera), and mosquitoes (Diptera) and made observations for some traits in seven other taxa representing mayflies, stone flies (Plecoptera), true flies (Diptera), and true bugs (Hemiptera). We further assessed the permeability of the cuticle to 3H2O influx and 22Na efflux when faced with deionized water in these same taxa. We hypothesized a relationship between uptake rates and reported saline tolerances, but our data did not support this hypothesis, likely because acclimatory responses were not part of this experimental approach. However, we found several common physiological traits across the taxa studied, including (i) ionic uptake rates that were always positively correlated with dissolved concentrations, (ii) generally low Ca uptake rates relative to other freshwater taxa, (iii) greater Na loss than Na uptake in dilute conditions, (iv) ion uptake that was more variable in ion-rich conditions than in dilute conditions, and (v) 3H2O influx that occurs quickly (but this rapidly exchangeable pool of body water accounts for a surprisingly small percentage of the water content of species tested). There remains much to learn about the physiology of these important organisms in the face of changing salinity regimes worldwide.


Assuntos
Água Doce , Insetos , Osmorregulação , Animais , Osmorregulação/fisiologia , Insetos/fisiologia , Salinidade
5.
Braz J Biol ; 84: e281457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896729

RESUMO

Cowpea is a leguminous plant belonging to the fabaceae family cultivated in the North and Northeast regions of Brazil, with productive potential. Among the abiotic factors, water deficiency is one of the main environmental limitations that influence agricultural production in the world. The objective of this work was to study the relative water content and osmoregulators of cowpea plants subjected to water stress. The experiment was carried out in a greenhouse at the Universidade Federal Rural da Amazônia (UFRA, Belém, PA), cowpea plants BR-17 Gurguéia Vigna unguiculata (L.) Walp were used. The experimental design was completely randomized (DIC) in a 2 × 2 factorial scheme, two water conditions (control and water deficit) and two times of stress (four and six days of water suspension), with 7 replications, totaling 28 experimental units. The water deficit affected plants, causing a reduction in relative water content (69.98%), starch (12.84% in leaves and 23.48% in roots) and carbohydrates (84.34%), and an increase in glycine-betaine, sucrose (114.11% in leaves and 18.71% in roots) and proline (358.86%) at time 2. The relative water content was negatively affected by water conditions, with a decrease in relation to the interaction of the aerial part and the root system. Therefore, greater metabolic responses were noted in plants that were subjected to stress treatment at time 2 (6 days).


Assuntos
Vigna , Água , Desidratação , Osmorregulação/fisiologia , Betaína/análise
6.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695350

RESUMO

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Betaína/metabolismo , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Lactococcus lactis/metabolismo , Concentração Osmolar , Osmorregulação , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula
7.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760671

RESUMO

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Assuntos
Helianthus , Sulfeto de Hidrogênio , Osmorregulação , Fotossíntese , Estresse Salino , Plântula , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sulfeto de Hidrogênio/metabolismo , Cloroplastos/metabolismo , Salinidade
8.
Mar Pollut Bull ; 203: 116432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728954

RESUMO

Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.


Assuntos
Bass , Salinidade , Transcriptoma , Animais , Bass/fisiologia , Bass/genética , Osmorregulação , Estresse Salino , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
9.
Sci Total Environ ; 935: 173215, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38750748

RESUMO

The Manila clam (Ruditapes philippinarum) is a commercially important marine bivalve, which inhabits the estuarine and mudflat areas. The osmoregulation is of great significance for molluscs adaptation to salinity fluctuations. In this study, we investigated the effects of low salinity (10 psu) and high salinity (40 psu) stress on survival and osmoregulation of the R. philippinarum. The results of physiological parameters showed that the ion (Na+, K+, Cl-) concentrations and Na+/K+-ATPase (NKA) activity of R. philippinarum decreased significantly under low salinity stress, but increased significantly under high salinity stress, indicating that there are differences in physiological adaptation of osmoregulation of R. philippinarum. In addition, we conducted the transcriptome analysis in the gills of R. philippinarum exposed to low (10 psu) and high (40 psu) salinity challenge for 48 h using RNA-seq technology. A total of 153 and 640 differentially expressed genes (DEGs) were identified in the low salinity (LS) group and high salinity (HS) group, respectively. The immune (IAP, TLR6, C1QL4, Ank3), ion transport (Slc34a2, SLC39A14), energy metabolism (PCK1, LDLRA, ACOX1) and DNA damage repair-related genes (Gadd45g, HSP70B2, GATA4) as well as FoxO, protein processing in endoplasmic reticulum and endocytosis pathways were involved in osmoregulation under low salinity stress of R. philippinarum. Conversely, the ion transport (SLC6A7, SLC6A9, SLC6A14, TRPM2), amino acid metabolism (GS, TauD, ABAT, ALDH4A1) and immune-related genes (MAP2K6, BIRC7A, CTSK, GVIN1), and amino acid metabolism pathways (beta-Alanine, Alanine, aspartate and glutamate, Glutathione) were involved in the process of osmoregulation under high salinity stress. The results obtained here revealed the difference of osmoregulation mechanism of R. philippinarum under low and high salinity stress through physiological and molecular levels. This study contributes to the assessment of salinity adaptation of bivalves in the context of climate change and provides useful information for marine resource conservation and aquaculture.


Assuntos
Bivalves , Osmorregulação , Estresse Salino , Transcriptoma , Animais , Bivalves/fisiologia , Bivalves/genética , Perfilação da Expressão Gênica , Salinidade
10.
Environ Sci Pollut Res Int ; 31(21): 30806-30818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613757

RESUMO

In this study, the effects of exogenous methyl jasmonate (MeJA) on metal uptake and its ability to attenuate metal toxicity in kenaf plants under Pb stress were investigated. The experiment was conducted with five different MeJA concentrations (0, 40, 80, 160, and 320 µM) as a foilar application to kenaf plants exposed to 200 µM Pb stress. The results revealed that pretreatmen of MeJA significantly increased plant dry weight, plant height, and root architecture at all concentrations tested, with the most significant increase at 320 µM. Foliar application of MeJA at 160 µM and 320 µM increased the Pb concentrations in leaves and stems as well as the translocation factor (TF) from root to leaf. However, the bioaccumulation factor in the shoot initially decreased and then increased with increasing MeJA concentration. By increasing enzymatic (SOD, POD, and CAT) and non-enzymatic (AsA and non-protein thiols) antioxidants, MeJA pretreatment decreased lipid peroxidation, O2- and H2O2 accumulation and recovered photosynthetic pigment content under Pb stress. Increased osmolytes (proline, sugar, and starch) and protein content after MeJA pretreatment under Pb stress restore cellular homeostasis and improved kenaf tolerance. Our results suggest that MeJA pretreatment modifies the antioxidant machinery of kenaf and inhibits stress-related processes that cause lipid peroxidation, hence enhancing plant tolerance to Pb stress.


Assuntos
Acetatos , Antioxidantes , Ciclopentanos , Hibiscus , Chumbo , Oxilipinas , Antioxidantes/metabolismo , Chumbo/toxicidade , Osmorregulação/efeitos dos fármacos
11.
Sci Total Environ ; 930: 172695, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663613

RESUMO

General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 µmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.


Assuntos
Cádmio , Resistência a Medicamentos , Nicotiana , Proteínas de Plantas , Cádmio/toxicidade , Cádmio/metabolismo , Nicotiana/fisiologia , Nicotiana/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Resistência a Medicamentos/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Ativação Enzimática/genética , Osmorregulação/genética , Espaço Intracelular/metabolismo
12.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568203

RESUMO

Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.


Assuntos
Osmorregulação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Pressão Osmótica , Proliferação de Células , Glucose
13.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38588711

RESUMO

Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous Streptomyces albidoflavus T4 and Streptomyces rochei D74 improved drought tolerance in naked oat (Avena nuda ) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.


Assuntos
Antioxidantes , Streptomyces , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Plântula , Osmorregulação , Avena/metabolismo , Resistência à Seca , Estresse Fisiológico , Streptomyces/metabolismo
14.
Eur J Protistol ; 94: 126078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688044

RESUMO

Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.


Assuntos
Eucariotos , Vacúolos , Eucariotos/fisiologia , Osmorregulação/fisiologia
15.
Sci Rep ; 14(1): 6677, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509217

RESUMO

The hyperarid mangrove in the Middle East is characterised by the absence of rivers or freshwater inputs and is one of the most extreme settings of this ecosystem on Earth. Endemic to Qatar's hyperarid mangroves, a Palaemon shrimp is uniquely confined to a sole mangrove site in the Arabian Gulf. Within these mangrove channels, we unveiled brine groundwater sources exceeding 70 ppt salinity, contrasting the local marine standard of 42 ppt. Concurrently, a mysid species typically linked to salt pans and groundwater coexists. Stable isotopic analysis implied the existence of a predator-prey dynamic between this mysid species and the studied shrimp. Then, investigating the endemic shrimp's adaptation to extreme salinity, we conducted osmolarity experiments and phylogenetic studies. Our findings demonstrate that this shrimp transitions from hypo- to hyper-osmoregulation, tolerating salinities from 18 to 68 ppt-an unprecedented osmoregulatory capacity among caridean shrimps. This speciation pattern likely arises from the species osmolarity adaptation, as suggested for other Palaemon congeners. Phylogenetic analysis of the studied Palaemon, along with the mangrove's geological history, suggests a profound evolutionary interplay between the ecosystem and the shrimp since the Eocene. This study proposes the hyperarid mangrove enclave as an Athalassic mangrove oasis-a distinctive, isolated ecosystem within the desert landscape.


Assuntos
Osmorregulação , Palaemonidae , Animais , Ecossistema , Filogenia , Equilíbrio Hidroeletrolítico , Concentração Osmolar , Palaemonidae/fisiologia
16.
PLoS One ; 19(3): e0298213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478568

RESUMO

Freshwater salinization poses global challenges for aquatic organisms inhabiting urban streams, impacting their physiology and ecology. However, current salinization research predominantly focuses on mortality endpoints in limited model species, overlooking the sublethal effects on a broader spectrum of organisms and the exploration of adaptive mechanisms and pathways under natural field conditions. To address these gaps, we conducted high-throughput sequencing transcriptomic analysis on the gill tissue of the euryhaline fish Gasterosteus aculeatus, investigating its molecular response to salinity stress in the highly urbanized river Boye, Germany. We found that in stream sections with sublethal concentrations of chloride costly osmoregulatory systems were activated, evidenced by the differential expression of genes related to osmoregulation. Our enrichment analysis revealed differentially expressed genes (DEGs) related to transmembrane transport and regulation of transport and other osmoregulation pathways, which aligns with the crucial role of these pathways in maintaining biological homeostasis. Notably, we identified candidate genes involved in increased osmoregulatory activity under salinity stress, including those responsible for moving ions across membranes: ion channels, ion pumps, and ion transporters. Particularly, genes from the solute carrier family SLC, aquaporin AQP1, chloride channel CLC7, ATP-binding cassette transporter ABCE1, and ATPases member ATAD2 exhibited prominent differential expression. These findings provide insights into the potential molecular mechanisms underlying the adaptive response of euryhaline fish to salinity stress and have implications for their conservation and management in the face of freshwater salinization.


Assuntos
Rios , Smegmamorpha , Animais , Salinidade , Perfilação da Expressão Gênica , Osmorregulação/genética , Água Doce , Peixes/genética , Smegmamorpha/genética , Brânquias/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38437996

RESUMO

Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.


Assuntos
Carbanilidas , Neoplasias , Oryzias , Poluentes Químicos da Água , Animais , Osmorregulação , Oryzias/metabolismo , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
PLoS One ; 19(3): e0298258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446823

RESUMO

Clonal integration of defense or stress signal induced systemic resistance in leaf of interconnected ramets. However, similar effects of stress signal in root are poorly understood within clonal network. Clonal fragments of Centella asiaticas with first-young, second-mature, third-old and fourth-oldest ramets were used to investigate transportation or sharing of stress signal among interconnected ramets suffering from low water availability. Compared with control, oxidative stress in root of the first-young, second-mature and third-old ramets was significantly alleviated by exogenous ABA application to the fourth-oldest ramets as well as enhancement of antioxidant enzyme (SOD, POD, CAT and APX) activities and osmoregulation ability. Surface area and volume in root of the first-young ramets were significantly increased and total length in root of the third-old ramets was significantly decreased. POD activity in root of the fourth-oldest and third-old ramets was significantly enhanced by exogenous ABA application to the first-young ramets. Meanwhile, total length and surface area in root of the fourth-oldest and third-old ramets were significantly decreased. Ratio of belowground to aboveground biomass in the whole clonal fragments was significantly increased by exogenous ABA application to the fourth-oldest or first-young ramets. It is suggested that transportation or sharing of stress signal may induce systemic resistance in root of interconnected ramets. Specially, transportation or sharing of stress signal against phloem flow was observed in the experiment. Possible explanation is that rapid recovery of foliar photosynthesis in first-young ramets subjected to exogenous ABA application can partially reverse phloem flow within clonal network. Thus, our experiment provides insight into ecological implication on clonal integration of stress signal.


Assuntos
Antioxidantes , Centella , Ansiedade , Biomassa , Osmorregulação
19.
J Exp Zool A Ecol Integr Physiol ; 341(5): 553-562, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470008

RESUMO

Physiological and morphological acclimation capacities of black-chinned tilapia, Sarotherodon melanotheron were studied from fish to gill cell level when fish are maintained in freshwater, seawater, and hypersaline conditions. Fish osmoregulatory capacity, gill ionocyte morphology, osmo-respiratory compromise, O2 consumption rate, branchial antioxidative defense, and cell apoptosis were considered. Captive juvenile tilapias were maintained in controlled freshwater conditions (FW: 0.4 ppt; 12 mOsm kg-1) or gradually transferred to seawater (SW: 32 ppt; 958 mOsm kg-1) and concentrated SW (cSW: 65 ppt; 1920 mOsm kg-1). After 15 days in these conditions, blood osmolality and chloride ion concentration were determined. Gill ionocyte density and morphology were measured using immunolabelled histological sections to specifically detect the sodium pump (NKA). Gill osmo-respiratory compromise was also calculated along with oxygen consumption rates from normoxic to hypoxic conditions from excised gills (indirect respirometry). Finally, catalase and caspase 3/7activities were recorded from gill extracts. Results indicate that elevated salinity induces an osmotic imbalance and a profound morphological change with proliferating and hypertrophied ionocytes. This thickening of the gill interlamellar cell mass and the shortening of the lamellae induce a reduced osmo-respiratory ratio and reduced respiratory capacity under both normoxic and hypoxic conditions. Although salinity changes do not affect one of the major antioxidative defense mechanism, it strongly affects apoptosis that appears the most elevated in SW. However, in freshwater condition, fish can maintain their osmotic balance with a low ionocyte density, a low apoptotic level and a drastically reduced O2 consumption in normoxic condition that is maintained in hypoxia. Therefore, S. melanotheron presents the typical functional remodeling due to environmental salinity changes ranging from FW to SW. However, elevated seawater induces major cellular stress inducing a profound gill morphofunctional dysfunctioning. While cell apoptosis is reduced, ionocyte proliferation is massively increased with impaired osmotic regulation and reduced O2 consumption both in normoxic and hypoxic conditions.


Assuntos
Brânquias , Consumo de Oxigênio , Tilápia , Animais , Tilápia/fisiologia , Consumo de Oxigênio/fisiologia , Salinidade , Apoptose , Água do Mar/química , Estresse Salino , Osmorregulação , Água Doce , Aclimatação/fisiologia
20.
Environ Res ; 252(Pt 1): 118800, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555088

RESUMO

With global climate changing, hypo-salinity events are increasing in frequency and duration because of continuous rainfall and freshwater inflow, which causes reduced cytosolic osmolarity and cellular stress responses in aquatic animals. Sea cucumbers are considered stenohaline because they lack osmoregulatory organs and are vulnerable to salinity fluctuations. In this study, we performed multiple biochemical assays, de novo transcriptomics, and widely targeted metabolomics to comprehensively explore the osmoregulatory mechanisms and physiological responses of sea cucumber Holothuria moebii to hypo-osmotic stress, which is a representative specie that is frequently exposed to hypo-saline intertidal zones. Our results found that H. moebii contracted their ambulacral feet and oral tentacles, and the coelomic fluid ion concentrations were reduced to be consistent with the environment. The microvilli of intestines and respiratory trees underwent degeneration, and the cytoplasm exhibited swelling and vacuolation. Moreover, the Na+, K+, and Cl- concentrations and Na+/K+-ATPase activity were significantly reduced under hypo-osmotic stress. The decrease in protein kinase A activity and increase in 5'-AMP level indicated a significant inhibition of the cAMP signaling pathway to regulate ion concentrations. And small intracellular organic molecules (amino acids, nucleotides and their derivatives) also play crucial roles in osmoregulation through oxidative deamination of glutamate, nucleotide catabolism, and nucleic acid synthesis. Moreover, lysosomes and peroxisomes removed oxidative damage, whereas antioxidant metabolites, such as N-acetyl amino acids and glutathione, were increased to resist oxidative stress. With prolonged hypo-osmotic stress, glycerophospholipid metabolism was enhanced to maintain membrane stability. Furthermore, acyl-CoA-binding protein activity was significantly inhibited, and only a small amount of acylcarnitine was significantly accumulated, which indicated a disruption in energy metabolism. PPAR signaling pathway and choline content were up-regulated to promote fatty acid metabolism under hypo-osmotic stress. Overall, our results provide new insights into the osmoregulatory mechanisms and physiological responses of sea cucumbers to hypo-osmotic stress.


Assuntos
Antioxidantes , Metabolismo Energético , Holothuria , Osmorregulação , Pressão Osmótica , Animais , Holothuria/fisiologia , Antioxidantes/metabolismo , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA