Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(7): 4760-4777, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30387075

RESUMO

Ceramide (Cer) has a key role inducing cell death and has been proposed as a messenger in photoreceptor cell death in the retina. Here, we explored the pathways induced by C2-acetylsphingosine (C2-Cer), a cell-permeable Cer, to elicit photoreceptor death. Treating pure retina neuronal cultures with 10 µM C2-Cer for 6 h selectively induced photoreceptor death, decreasing mitochondrial membrane potential and increasing the formation of reactive oxygen species (ROS). In contrast, amacrine neurons preserved their viability. Noteworthy, the amount of TUNEL-labeled cells and photoreceptors expressing cleaved caspase-3 remained constant and pretreatment with a pan-caspase inhibitor did not prevent C2-Cer-induced death. C2-Cer provoked polyADP ribosyl polymerase-1 (PARP-1) overactivation. Inhibiting PARP-1 decreased C2-Cer-induced photoreceptor death; C2-Cer increased polyADP ribose polymer (PAR) levels and induced the translocation of apoptosis inducing factor (AIF) from mitochondria to photoreceptor nuclei, which was prevented by PARP-1 inhibition. Pretreatment with a calpain and cathepsin inhibitor and with a calpain inhibitor reduced photoreceptor death, whereas selective cathepsin inhibitors granted no protection. Combined pretreatment with a PARP-1 and a calpain inhibitor evidenced the same protection as each inhibitor by itself. Neither autophagy nor necroptosis was involved in C2-Cer-elicited death; no increase in LDH release was observed upon C2-Cer treatment and pretreatment with inhibitors of necroptosis and autophagy did not rescue photoreceptors. These results suggest that C2-Cer induced photoreceptor death by a novel, caspase-independent mechanism, involving activation of PARP-1, decline of mitochondrial membrane potential, calpain activation, and AIF translocation, all of which are biochemical features of parthanatos.


Assuntos
Ceramidas/farmacologia , Parthanatos/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Animais , Fator de Indução de Apoptose/metabolismo , Calpaína/metabolismo , Caspases/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA