Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.606
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902068

RESUMO

Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.


Assuntos
Antioxidantes , Feófitas , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Floroglucinol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mioblastos/metabolismo , Feófitas/metabolismo , Apoptose
2.
Mar Drugs ; 21(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36827143

RESUMO

Despite the increased interest in macroalgae protein and fibers, little information is available on their bioaccessibility. The application of an in vitro gastrointestinal digestion model to study the degree of disintegration and release of proteins with expressed bioactivities from wild and cultivated Palmaria palmata and Saccharina latissima was proposed in this study. Macroalgae from the Gulf of St Lawrence, Canada, were submitted to digestive transit times of 2 (oral), 60 (gastric) and 120 (duodenal) minutes. Among wild samples, P. palmata had a higher percentage of disintegration, protein release and degree of hydrolysis than S. latissima. While the least digested sample, wild S. latissima, was the sample with the highest antioxidant activity (210 µmol TE g-1), the most digested sample, cultivated P. palmata, presented the highest ability to inhibit the angiotensin-converting enzyme (ACE), reaching 32.6 ± 1.2% at 3 mg mL-1. ACE inhibitory activity increased from 1 to 3 mg mL-1, but not at 5 mg mL-1. Wild samples from both species showed an ACE inhibition around 27.5%. Data suggested that the disintegration of the samples was influenced by their soluble and insoluble fiber contents. Further information on the bioaccessibility and bioactivity of these macroalgae should consider the characterization of digestion products other than protein, as well as the effects of previous product processing.


Assuntos
Feófitas , Rodófitas , Alga Marinha , Antioxidantes/farmacologia , Hidrólise
3.
Mar Drugs ; 21(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36827138

RESUMO

The content of bioactive compounds in four brown and one red algae from the Adriatic Sea (Dictyota dichotoma, Gongolaria barbata, Ericaria amentacea, Sargassum hornschuchii and Ellisolandia elongata) is explored. The efficiency of two different extraction methods viz. ultrasound-assisted extraction (UAE) and matrix solid-phase dispersion (MSPD) to obtain the extracts rich in phenolic compounds was compared. The effect of the extraction solvent to modulate the phenolic profile was assessed. In general, the mixture ethanol/water in an isovolumetric proportion showed the best results. The total phenolic content (TPC) and antioxidant activity (AA), as well as the individual polyphenolic profile, were evaluated for five target algae. TPC values ranged between 0.2 mg GAE/g (for E. elongata) and 38 mg GAE/g (for S. hornschuchii). Regarding the quantification of individual polyphenols by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the presence of a high number of hydroxybenzoic acid derivatives (mainly of 3- and 4-hydroxybenzoic acids) in all species was noted. In G. barbata their concentrations reached up to 500 mg/kg. IC50 values (ABTS assay) ranged between 44 mg/L (for S. hornschuchii) and 11,040 mg/L (for E. elongata). This work contributes to the in-depth characterization of these little-explored algae, showing their potential as a natural source of phenolic compounds.


Assuntos
Feófitas , Rodófitas , Sargassum , Cromatografia Líquida , Bioprospecção , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Fenóis/química , Antioxidantes/química , Extratos Vegetais/química
4.
Development ; 150(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36786333

RESUMO

The first mitotic division of the initial cell is a key event in all multicellular organisms and is associated with the establishment of major developmental axes and cell fates. The brown alga Ectocarpus has a haploid-diploid life cycle that involves the development of two multicellular generations: the sporophyte and the gametophyte. Each generation deploys a distinct developmental programme autonomously from an initial cell, the first cell division of which sets up the future body pattern. Here, we show that mutations in the BASELESS (BAS) gene result in multiple cellular defects during the first cell division and subsequent failure to produce basal structures during both generations. BAS encodes a type B″ regulatory subunit of protein phosphatase 2A (PP2A), and transcriptomic analysis identified potential effector genes that may be involved in determining basal cell fate. The bas mutant phenotype is very similar to that observed in distag (dis) mutants, which lack a functional Tubulin-binding co-factor Cd1 (TBCCd1) protein, indicating that TBCCd1 and PP2A are two essential components of the cellular machinery that regulates the first cell division and mediates basal cell fate determination.


Assuntos
Feófitas , Proteína Fosfatase 2 , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Mutação/genética , Perfilação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Feófitas/genética , Feófitas/metabolismo
5.
Appl Microbiol Biotechnol ; 107(5-6): 1971-1982, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36735067

RESUMO

Rugulopteryx okamurae is an invasive brown alga causing severe environmental and economic problems on the western Mediterranean coasts. Thus, in addition to the difficulties caused to the fishing and tourism sectors, there is a need to manage its accumulation on the beaches. This work aims to valorise this waste by using it as raw material for producing monosaccharides through a two-stage sequential process. These sugars could be used for different fermentative processes to obtain high-value-added bioproducts. In this work, biological pretreatment of the previously conditioned seaweed with the fungus Aspergillus awamori in solid-state fermentation (SSF), followed by enzymatic hydrolysis with a commercial enzyme cocktail, was performed. The effect of the extension of the biological pretreatment (2, 5, 8 and 12 days) on the subsequent release of total reducing sugars (TRS) in the enzymatic hydrolysis stage was studied. To analyse this effect, experimental data of TRS produced along the hydrolysis were fitted to simple first-order kinetics. Also, the secretion of cellulase and alginate lyase by the fungus, along with the biological pretreatment, was determined. The results suggest that 5 days of biological pretreatment of the macroalgae with A. awamori followed by enzymatic saccharification for 24 h with Cellic CTec2® (112 FP units/g of dry biomass) are the best conditions tested, allowing the production of around 240 g of TRS per kg of dried biomass. The main sugars obtained were glucose (95.8 %) and mannitol (1.5 %), followed by galactose (1 %), arabinose (0.9 %) and fucose (0.5 %). KEY POINTS: • Five-day SSF by A. awamori was the best condition to pretreat R. okamurae. • Five-day SSF was optimal for alginate lyase production (1.63 ±0.011 IU/g biomass). • A maximum yield of 239 mg TRS/g biomass was obtained (with 95.8 % glucose).


Assuntos
Celulase , Feófitas , Alga Marinha , Açúcares , Feófitas/metabolismo , Alga Marinha/metabolismo , Celulase/metabolismo , Glucose , Biomassa , Fermentação , Hidrólise
6.
Bioresour Technol ; 374: 128769, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841396

RESUMO

The investigation on utilizing macroalgae for industrial scale biodiesel production is an imperative action needed for commercialization. In the present research work, the biooil from marine macroalgae Dictyota bartayresiana was used for biodiesel production using calcium oxide nanocatalyst synthesized using waste collected from building demolition site. The optimization results obtained were the calcination temperature 573 °C, concentration of catalyst 5.62%, methanol to oil molar ratio 14.36:1, temperature 55.7 °C and time 67.57 min for the transesterification with the biodiesel yield of 89.6%. The techno-economic aspects of biodiesel production were investigated for 20 MT/batch. The return on investment and internal rate of return from the biodiesel production plant was found to be 25.39% and 31.13% respectively. The plant payback period was about 3.94 years with a positive NPV value of about 14,053,000 $/yr. Thus, Dictyota bartayresiana biomass can be efficiently used for the sustainable production of biodiesel.


Assuntos
Feófitas , Alga Marinha , Óleos de Plantas , Biocombustíveis/análise , Metanol , Catálise , Esterificação
7.
Nutrients ; 15(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36839173

RESUMO

Scytosiphon lomentaria (SL) is a brown seaweed with antioxidant and anti-inflammatory properties; however, its effects on obesity are unknown. In this research, we investigated the anti-obesity properties and underlying mechanisms of the SL extract in vitro and in vivo. In 3T3-L1 preadipocytes, SL extract inhibited lipid accumulation, decreased the expression of Acc1, C/ebpa, Pparg mRNA and p-ACC1, and increased the expression of Ucp1 mRNA, UCP1 and p-AMPK. In animal experiments, mice were fed a chow diet, a high-fat diet (HF; 60% of calories as fat), and high-fat diet with SL extract (150 and 300 mg/kg body weight) for eight weeks (n = 10/group). SL extract reduced HF-induced weight gain, epididymal fat weight, fat cell size, LDL-C, leptin, fasting glucose, and glucose tolerance. In addition, SL extract had comparable effects on mRNA expression in WAT and liver to those observed in vitro, thereby inhibiting p-ACC1/ACC1 and increasing p-AMPK/AMPK and UCP1 expression. Furthermore, SL extract decreased HF-induced Firmicutes/Bacteroidetes ratio and reversed HF-reduced Bacteroides spp., Bacteroides vulgatus, and Faecalibacterium prausnitzii. These findings suggest that SL extract can aid in weight loss in mice fed a high-fat diet by altering adipogenic and thermogenic pathways, as well as gut microbiota composition.


Assuntos
Produtos Biológicos , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Glucose , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Alga Marinha/química , Produtos Biológicos/farmacologia , Feófitas/química
8.
Mar Drugs ; 21(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36662213

RESUMO

The brown macroalgae of the species Rugulopteryx okamurae has reached European waters and the Strait of Gibraltar as an invasive species. The proliferation and colonization of the species in subtidal and intertidal zones of these regions imposes significant threats to local ecosystems and additionally represents a significant socioeconomic burden related to the large amounts of biomass accumulated as waste. As a way to minimize the effects caused by the accumulation of algae biomass, investigations have been made to employ this biomass as a raw material in value-added products or technologies. The present review explores the potential uses of R. okamurae, focusing on its impact for biogas production, composting, bioplastic and pharmaceutical purposes, with potential anti-inflammatory, antibacterial and α-glucosity inhibitory activities being highlighted. Overall, this species appears to present many attributes, with remarkable potential for uses in several fields of research and in various industries.


Assuntos
Feófitas , Alga Marinha , Ecossistema , Biomassa
9.
Mar Drugs ; 21(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36662221

RESUMO

Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction pre-treatment steps and MAE optimization, the algal biomasses were extracted in a ratio of 1:25 in 0.1 M HCl containing 2 M CaCl2 for 1.0 min. The results showed that L. saccharina's extract was different from the others, regarding the highest sugar content reached 0.47 mg glucose equivalent/mg extract being confirmed by monosaccharide composition analysis and the lowest fucoidan content and sulfation degree at 0.09 mg/mg extract and 0.13, respectively. Moreover, these findings were confirmed by tentative structural elucidation based on Fourier-transform infrared spectrometry which also showed a different spectrum. However, the MAE enhanced melanoidins formation in products, which was confirmed by the intense band at 1420 cm-1. Interestingly, the results of monomeric composition showed that fucoidan extract by MAE from F. vesiculosus belonged to sulfated galactofucans which are known for their potential bioactivities. Furthermore, the cytotoxic activity of the four fucoidans in concentrations ranging from 4.9 µg/mL to 2500 µg/mL was investigated and correlated with the chemical characterization showing that F. vesiculosus_MAE fucoidan was the most potent and safest. The current research revealed the chemical heterogeneity of fucoidans regarding taxonomical class and used greener extraction method of fucoidans toward the achievement of the UN sustainability goals.


Assuntos
Antineoplásicos , Fucus , Feófitas , Alga Marinha , Micro-Ondas , Polissacarídeos/farmacologia , Polissacarídeos/química , Alga Marinha/química , Feófitas/química , Fucus/química
10.
Nutrients ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678334

RESUMO

The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.


Assuntos
Clorófitas , Diatomáceas , Microalgas , Feófitas , Humanos , Suplementos Nutricionais
11.
Sci Total Environ ; 869: 161786, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706994

RESUMO

Characterization of biochar-derived dissolved organic matter (DOM) can provide deep insight into potential applications of biochar. Herein, biochar from six macroalgae (Phaeophyta-Sargassum fusiforme, Sargassum thunbergii, and Sargassum vachellianum; Rhodophyta-Grateloupia turuturu and Chondria crassicaulis; and Chlorophyta-Ulva pertusa) were subjected to pyrolysis at different temperatures (200 °C-500 °C). The effects of pyrolysis temperature and extraction solution pH on the characteristics of the macroalgal biochar-derived DOM (MBDOM) were investigated via fluorescence excitation-emission matrix spectroscopy with parallel factor (PARAFAC) analysis. Five humic-like substances and one protein-like substance were identified. The distributions of the six PARAFAC components depended on the macroalgae species, pyrolysis temperature, and extraction solution pH. The proportion of the protein-like substance (0 %-46.77 %) was less than that of the humic-like substances (100 %-53.23 %) in a given MBDOM regardless of the extraction solution pH values. Fluorescence spectral indicators show that DOM from macroalgal biochar is more autochthonous and humified than that from the corresponding biomass. Hierarchical cluster analysis and redundancy analysis results further show that the macroalgae species, pyrolysis temperature, and extraction solution pH jointly affect DOM characteristics with varying contribution levels.


Assuntos
Feófitas , Rodófitas , Sargassum , Alga Marinha , Ulva , Temperatura , Matéria Orgânica Dissolvida , Pirólise , Carvão Vegetal/química , Substâncias Húmicas/análise , Proteínas , Espectrometria de Fluorescência/métodos , Concentração de Íons de Hidrogênio
12.
J Agric Food Chem ; 71(4): 1771-1787, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689477

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The increasing NAFLD incidences are associated with unhealthy lifestyles. Currently, there are no effective therapeutic options for NAFLD. Thus, there is a need to develop safe, efficient, and economic treatment options for NAFLD. Brown algae, which are edible, contain abundant bioactive compounds, including polysaccharides and phlorotannins. They have been shown to ameliorate insulin resistance, as well as hepatic steatosis, and all of these biological functions can potentially alleviate NAFLD. Accumulating reports have shown that increasing dietary consumption of brown algae reduces the risk for NAFLD development. In this review, we summarized the animal experiments and clinical proof of brown algae and their bioactive compounds for NAFLD treatment within the past decade. Our findings show possible avenues for further research into the pathophysiology of NAFLD and brown algae therapy.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Feófitas/química , Feófitas/metabolismo
13.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695424

RESUMO

Silver nanoparticle (AgNPs) production with antibacterial and antitumor properties is an important application in the medical field. This study introduces a novel organism that can be used for the large-scale production of AgNPs. The edible brown alga Eisenia bicyclis was used as a reducing agent to biosynthesize stable AgNPs. In this study, we achieved producing 50 mg AgNPs using only 1 g dried E. bicyclis seaweed. AgNP biosynthesis was performed at optimized conditions of a reaction temperature of 90°C, a seaweed extract concentration of 0.4%, and an AgNO3 concentration of 0.5 mM within 20 min, and the results showed that the formed nanoparticles are spherical and monodispersed with an average size 18.5 ± 1.2 nm. The antibacterial activity of biosynthesized AgNPs was evaluated against some human clinical pathogens. Results showed that AgNPs had antibacterial activity against all tested bacterial strains, with the appearance of a clear zone equal to or larger than positive controls. Also, there was a concentration-dependent growth inhibition of in vitro cultured breast cancer cells treated with AgNPs and overexpression of p53 and Bax, and underexpression of Bcl-2. AgNPs synthesized by this method provide a potential source for antibacterial and anticancer applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Feófitas , Alga Marinha , Humanos , Prata/farmacologia , Extratos Vegetais , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Int J Biol Macromol ; 226: 434-442, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36502944

RESUMO

Applications of natural fibres are expanding, and sustainable alternatives are needed to support this growing demand. We investigated the production of fibres using alginates from Saccharina latissima (SAC), Laminaria digitata (LAM), Sacchoriza polyschides (SACC), and Himanthalia spp. (HIM). After extraction (3 % w/v biomass) using a sustainable protocol based on citric acid, crude alginate represented 61-65 % of the biomass dry weight for SAC and LAM, and 34-41 % for SACC and HIM when experiments were performed at small scale (1.5 g of starting material). Interestingly, scaling-up extraction (60 g of starting material) decreased yields to 26-30 %. SAC and LAM alginates had the highest M/G (mannuronic acid/guluronic acid) ratios and molecular weights when compared to those from SACC and HIM (M/G:1.98 and 2.23, MW: 302 and 362 kDa, vs 1.83 and 1.86, 268 and 168 kDa). When the four types of alginates were tested for spinning fibres cross-linked with CaCl2, only SAC and LAM alginates produced fibres. These fibres showed no clumps or cracks under stretching action and presented a similar Young's modulus (2.4 and 2.0 GPa). We have demonstrated that alginate extracted from S. latissima and L. digitata can be successfully spun into functional fibres cross-linked with CaCl2.


Assuntos
Laminaria , Feófitas , Alginatos , Cloreto de Cálcio , Ácidos Hexurônicos
15.
Int J Biol Macromol ; 226: 1319-1331, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511265

RESUMO

The effects of soluble dietary fiber (SDF) and cellulose (IDF) from Saccharina japonica by-product and their differences in improving constipation were further clarified in the present study. We demonstrated that SDF was mainly made up of d-mannuronic acid and d-mannose while IDF consisted of d-glucose , which is different from other reported dietary fibers of terrestrial plants. In this research, both SDF and IDF improved fecal-related indicators, gastrointestinal transit rate and histological morphology in Lop-induced mice. Moreover, they could increase the level of antioxidant enzymes (SOD and GSH-Px), restore the expression of enteric neurotransmitters, and maintain the function of ZO-1, JAM-1 as well as Occludin. Interestingly, SDF and IDF had a significant up-regulated effect on the proportion of Muribaculacea, Prevotellaceaen and Lachnospiraceae, which are critical to preserving intestinal immune homeostasis. Besides, they promoted the biosynthesis of short-chain fatty acids (SCFAs). The overall index showed that SDF is more effective for constipation due to its better water retention capacity. Thus, they can be used as a safe dietary supplement for the treatment of chronic or occasional constipation in humans.


Assuntos
Microbioma Gastrointestinal , Feófitas , Humanos , Camundongos , Animais , Celulose/farmacologia , Loperamida , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Fibras na Dieta/farmacologia , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Neurotransmissores , Feófitas/metabolismo
17.
Inflammopharmacology ; 31(1): 439-449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566264

RESUMO

This study identifies the anti-inflammatory, antioxidant, and immunomodulatory potential of a fatty acid methyl ester segregated from the brown algae Turbinaria ornata and identified by nuclear magnetic resonance and mass spectrometry as methyl 6,12-dimethyltridecanoate (ET). Antioxidant and anti-inflammatory effects of ET were studied on lipopolysaccharide (LPS)-induced inflammatory reaction in RAW 264.7 macrophages. Moreover, in silico docking studies of isolated ET with inflammatory markers TNFα, NFκB, and COX-2 showed potent binding scores suggesting anti-inflammatory potential. ET significantly reduced LPO and increased LPS-induced SOD, catalase, and GSH levels. Molecular docking results were further confirmed by checking mRNA levels of selected cytokines (IL6 and IL10), followed by protein expression of iNOS and NFκB in LPS-induced macrophages. ET significantly upregulated the expression of IL10 and downregulated the expression of IL6, iNOS, and NFκB, confirming the inhibition of LPS-induced inflammation via the iNOS/NFκB pathway.


Assuntos
Lipopolissacarídeos , Feófitas , Humanos , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Antioxidantes/farmacologia , Interleucina-10/metabolismo , Simulação de Acoplamento Molecular , Macrófagos , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Feófitas/química , Feófitas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
18.
Semin Cell Dev Biol ; 134: 112-124, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35307283

RESUMO

In brown algae, the extracellular matrix (ECM) and its constitutive polymers play crucial roles in specialized functions, including algal growth and development. In this review we offer an integrative view of ECM construction in brown algae. We briefly report the chemical composition of its main constituents, and how these are interlinked in a structural model. We examine the ECM assembly at the tissue and cell level, with consideration on its structure in vivo and on the putative subcellular sites for the synthesis of its main constituents. We further discuss the biosynthetic pathways of two major polysaccharides, alginates and sulfated fucans, and the progress made beyond the candidate genes with the biochemical validation of encoded proteins. Key enzymes involved in the elongation of the glycan chains are still unknown and predictions have been made at the gene level. Here, we offer a re-examination of some glycosyltransferases and sulfotransferases from published genomes. Overall, our analysis suggests novel investigations to be performed at both the cellular and biochemical levels. First, to depict the location of polysaccharide structures in tissues. Secondly, to identify putative actors in the ECM synthesis to be functionally studied in the future.


Assuntos
Feófitas , Feófitas/genética , Feófitas/química , Feófitas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Genoma , Matriz Extracelular/metabolismo
19.
Semin Cell Dev Biol ; 134: 90-102, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35317961

RESUMO

Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.


Assuntos
Arabidopsis , Feófitas , Animais , Zigoto , Feófitas/genética , Feófitas/metabolismo , Polaridade Celular , Divisão Celular , Plantas
20.
Semin Cell Dev Biol ; 134: 103-111, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35396168

RESUMO

Brown algae are complex multicellular eukaryotes whose cells possess a cell wall, which is an important structure that regulates cell size and shape. Alginate and fucose-containing sulfated polysaccharides (FCSPs) are two carbohydrate types that have major roles in influencing the mechanical properties of the cell wall (i.e. increasing or decreasing wall stiffness), which in turn regulate cell expansion, division, adhesion, and other processes; however, how brown algal cell wall structure regulates its mechanical properties, and how this relationship influences cellular growth and organismal development, is not well-understood. This chapter is focused on reviewing what we currently know about how the roles of alginates and FCSPs in brown algal developmental processes, as well as how they influence the structural and mechanical properties of cell walls. Additionally, we discuss how brown algal mutants may be leveraged to learn more about the underlying mechanisms that regulate cell wall structure, mechanics, and developmental processes, and finally we propose questions to guide future research with the use of emerging technologies.


Assuntos
Feófitas , Feófitas/genética , Feófitas/química , Feófitas/metabolismo , Parede Celular/química , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...