Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.494
Filtrar
1.
Plant Cell Rep ; 43(8): 197, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014054

RESUMO

Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.


Assuntos
Resistência à Doença , Doenças das Plantas , Vírus de Plantas , Plantas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Doenças das Plantas/virologia , Resistência à Doença/genética , Plantas/virologia , Plantas/metabolismo , Interações Hospedeiro-Patógeno , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Annu Rev Plant Biol ; 75(1): 655-677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038248

RESUMO

Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Vírus de Plantas , Plantas , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/imunologia , Vírus de Plantas/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Plantas/virologia , Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune
3.
Sci Rep ; 14(1): 15833, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982112

RESUMO

Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.


Assuntos
Cucurbitaceae , Secas , Doenças das Plantas , Doenças das Plantas/virologia , Cucurbitaceae/virologia , Cucumovirus/fisiologia , Cucumovirus/patogenicidade , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Água/metabolismo
4.
Virology ; 597: 110160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955083

RESUMO

Plant viruses threaten global food security by infecting commercial crops, highlighting the critical need for efficient virus detection to enable timely preventive measures. Current techniques rely on polymerase chain reaction (PCR) for viral genome amplification and require laboratory conditions. This review explores the applications of CRISPR-Cas assisted diagnostic tools, specifically CRISPR-Cas12a and CRISPR-Cas13a/d systems for plant virus detection and analysis. The CRISPR-Cas12a system can detect viral DNA/RNA amplicons and can be coupled with PCR or isothermal amplification, allowing multiplexed detection in plants with mixed infections. Recent studies have eliminated the need for expensive RNA purification, streamlining the process by providing a visible readout through lateral flow strips. The CRISPR-Cas13a/d system can directly detect viral RNA with minimal preamplification, offering a proportional readout to the viral load. These approaches enable rapid viral diagnostics within 30 min of leaf harvest, making them valuable for onsite field applications. Timely identification of diseases associated with pathogens is crucial for effective treatment; yet developing rapid, specific, sensitive, and cost-effective diagnostic technologies remains challenging. The current gold standard, PCR technology, has drawbacks such as lengthy operational cycles, high costs, and demanding requirements. Here we update the technical advancements of CRISPR-Cas in viral detection, providing insights into future developments, versatile applications, and potential clinical translation. There is a need for approaches enabling field plant viral nucleic acid detection with high sensitivity, specificity, affordability, and portability. Despite challenges, CRISPR-Cas-mediated pathogen diagnostic solutions hold robust capabilities, paving the way for ideal diagnostic tools. Alternative applications in virus research are also explored, acknowledging the technology's limitations and challenges.


Assuntos
Sistemas CRISPR-Cas , Doenças das Plantas , Vírus de Plantas , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Doenças das Plantas/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/genética , DNA Viral/genética
5.
New Phytol ; 243(4): 1539-1553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021237

RESUMO

The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-ß-farnesene (EßF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.


Assuntos
Afídeos , Densovirus , Nicotiana , Doenças das Plantas , Afídeos/virologia , Afídeos/fisiologia , Animais , Nicotiana/virologia , Nicotiana/parasitologia , Doenças das Plantas/virologia , Densovirus/fisiologia , Densovirus/genética , Potyvirus/fisiologia , Potyvirus/patogenicidade , Sesquiterpenos/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade
6.
Viruses ; 16(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38932180

RESUMO

Viral diseases pose a significant threat to tomato crops (Solanum lycopersicum L.), one of the world's most economically important vegetable crops. The limited genetic diversity of cultivated tomatoes contributes to their high susceptibility to viral infections. To address this challenge, tomato breeding programs must harness the genetic resources found in native populations and wild relatives. Breeding efforts may aim to develop broad-spectrum resistance against the virome. To identify the viruses naturally infecting 19 advanced lines, derived from native tomatoes, high-throughput sequencing (HTS) of small RNAs and confirmation with PCR and RT-PCR were used. Single and mixed infections with tomato mosaic virus (ToMV), tomato golden mosaic virus (ToGMoV), and pepper huasteco yellow vein virus (PHYVV) were detected. The complete consensus genomes of three variants of Mexican ToMV isolates were reconstructed, potentially forming a new ToMV clade with a distinct 3' UTR. The absence of reported mutations associated with resistance-breaking to ToMV suggests that the Tm-1, Tm-2, and Tm-22 genes could theoretically be used to confer resistance. However, the high mutation rates and a 63 nucleotide insertion in the 3' UTR, as well as amino acid mutations in the ORFs encoding 126 KDa, 183 KDa, and MP of Mexican ToMV isolates, suggest that it is necessary to evaluate the capacity of these variants to overcome Tm-1, Tm-2, and Tm-22 resistance genes. This evaluation, along with the characterization of advanced lines using molecular markers linked to these resistant genes, will be addressed in future studies as part of the breeding strategy. This study emphasizes the importance of using HTS for accurate identification and characterization of plant viruses that naturally infect tomato germplasm based on the consensus genome sequences. This study provides crucial insights to select appropriate disease management strategies and resistance genes and guide breeding efforts toward the development of virus-resistant tomato varieties.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Doenças das Plantas , Vírus de Plantas , Solanum lycopersicum , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/classificação , Genoma Viral/genética , Filogenia , Resistência à Doença/genética , RNA Viral/genética
7.
Viruses ; 16(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38932185

RESUMO

Increasing reports of tobacco rattle virus (TRV) and cycas necrotic stunt virus (CNSV) in herbaceous Paeonia worldwide highlight the importance of conserving the genetic resources of this economically important ornamental and medicinal crop. The unknown origin(s) of infection, differential susceptibility of peony cultivars to these viruses, and elusive disease phenotypes for CNSV in peonies make early detection and management challenging. Here, we report the presence of TRV and CNSV in plants of the University of Michigan living peony collection in the United States and a molecular characterization of their strains. Using sequences of the TRV 194 K RNA polymerase gene, we confirmed TRV infections in seven symptomatic plants (1.07% of all plants in the collection). Using newly developed primers, we recovered sequences of the CNSV RdRp gene and the polyprotein 1 gene region from nine out of twelve samples analyzed, including three from symptomless plants. Four of the nine plants had TRV and CNSV co-infections and showed more severe disease symptoms than plants only infected with TRV. Phylogenetic analyses of isolates from the University of Michigan living peony collection and publicly available isolates point to multiple origins of TRV and CNSV infections in this collection. This is the first report of TRV/CNSV co-infection and of a symptomatic detection of CNSV on cultivated P. lactiflora.


Assuntos
Coinfecção , Paeonia , Filogenia , Doenças das Plantas , Vírus de Plantas , Paeonia/virologia , Paeonia/genética , Doenças das Plantas/virologia , Coinfecção/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/classificação , RNA Viral/genética , Estados Unidos , Conservação dos Recursos Naturais
8.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885273

RESUMO

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , Morfogênese
9.
Methods Mol Biol ; 2822: 387-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907930

RESUMO

Plant viruses such as brome mosaic virus and cowpea chlorotic mottle virus are effectively purified through PEG precipitation and sucrose cushion ultracentrifugation. Increasing ionic strength and an alkaline pH cause the viruses to swell and disassemble into coat protein subunits. The coat proteins can be reassembled into stable virus-like particles (VLPs) that carry anionic molecules at low ionic strength and through two-step dialysis from neutral pH to acidic buffer. VLPs have been extensively studied due to their ability to protect and deliver cargo, particularly RNA, while avoiding degradation under physiological conditions. Furthermore, chemical functionalization of the surface of VLPs allows for the targeted drug delivery. VLPs derived from plants have demonstrated great potential in nanomedicine by offering a versatile platform for drug delivery, imaging, and therapeutic applications.


Assuntos
Vírus de Plantas , Vírus de Plantas/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírion/química , Vírion/genética , Bromovirus/química , Bromovirus/genética , RNA/química , Concentração de Íons de Hidrogênio , RNA Viral/genética
10.
Virology ; 597: 110144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943782

RESUMO

Sarracenia purpurea is a carnivorous plant historically used to treat smallpox infections. Our previous data found S. purpurea had broad spectrum antiviral activity in vitro. S. purpurea is one of several hundred identified carnivorous species of plants. Carnivorous plants have evolved through convergent evolution in at least ten independent events, usually in response to harsh environments where nutrition from prey is required for growth. These prey are known vectors of plant viruses that might introduce novel biotic stressors and defense pathways in carnivorous plants. This study evaluated the antiviral activity of several non-carnivorous and carnivorous plants from four evolutionarily distinct clades. Results demonstrated that carnivorous plants have evolved antiviral activity, a trait that is not present in related species of non-carnivorous plants. The antiviral trait may be due to the plant-prey relationship with insect vectors and an evolutionary need for carnivorous plants to have more robust antiviral defense systems.


Assuntos
Sarraceniaceae , Sarraceniaceae/virologia , Planta Carnívora/virologia , Planta Carnívora/fisiologia , Vírus de Plantas/fisiologia , Antivirais/farmacologia , Animais
11.
Plant Sci ; 346: 112165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925477

RESUMO

Agriculture and global food security encounter significant challenges due to viral threats. In the following decades, several molecular studies have focused on discovering biosynthetic pathways of numerous defensive and signaling compounds, as key regulators of plant interactions, either with viruses or their associated vectors. Nevertheless, the complexities of specialized metabolites mediated plant-virus-vector tripartite viewpoint and the identification of their co-evolutionary crossroads toward antiviral defense system, remain elusive. The current study reviews the various roles of plant-specialized metabolites (PSMs) and how plants use these metabolites to defend against viruses. It discusses recent examples of specialized metabolites that have broad-spectrum antiviral properties. Additionally, the study presents the co-evolutionary basis of metabolite-mediated plant-virus-insect interactions as a potential bioinspired approach to combat viral threats. The prospects also show promising metabolic engineering strategies aimed at discovering a wide range of PSMs that are effective in fending off viruses and their related vectors. These advances in understanding the potential role of PSMs in plant-virus interactions not only serve as a cornerstone for developing plant antiviral systems, but also highlight essential principles of biological control.


Assuntos
Doenças das Plantas , Vírus de Plantas , Plantas , Vírus de Plantas/fisiologia , Plantas/virologia , Plantas/metabolismo , Doenças das Plantas/virologia , Animais , Interações Hospedeiro-Patógeno , Evolução Biológica
12.
Anal Methods ; 16(27): 4485-4495, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38940060

RESUMO

Worldwide, plant pathogens have been a considerably important cause of economic loss in agriculture especially in the decades of agricultural intensification. The increasing losses in agriculture due to biotic plant diseases have drawn attention towards the development of plant disease analyzing methods. In this context, biosensors have emerged as significantly important tools which help farmers in on-field diagnosis of plant diseases. Compared to traditional methods, biosensors have outstanding features such as being highly sensitive and selective, cost-effective, portable, fast and user-friendly operation, and so on. There are three common types of biosensors including electrochemical, fluorescent, and colorimetric biosensors. In this review, some common biotic plant diseases caused by fungi, bacteria, and viruses are first summarized. Then, current advances in developing biosensors are discussed.


Assuntos
Técnicas Biossensoriais , Doenças das Plantas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Doenças das Plantas/microbiologia , Fungos/isolamento & purificação , Plantas/microbiologia , Bactérias/isolamento & purificação , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Vírus de Plantas/isolamento & purificação
13.
Plant Cell Rep ; 43(7): 177, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898307

RESUMO

KEY MESSAGE: Recently published high-quality reference genome assemblies indicate that, in addition to RDR1-deficiency, the loss of several key RNA silencing-associated genes may contribute to the hypersusceptibility of Nicotiana benthamiana to viruses.


Assuntos
Nicotiana , Doenças das Plantas , Interferência de RNA , Nicotiana/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas/genética , Regulação da Expressão Gênica de Plantas
14.
Sci Rep ; 14(1): 12948, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839925

RESUMO

Viral diseases are becoming an important problem in Amorphophallus production due to the propagation of seed corms and their trade across regions. In this study, combined-High-Throughput Sequencing, RT-PCR, electron microscopy, and mechanical inoculation were used to analyze virus-like infected Amorphophallus samples in Yunnan province to investigate the distribution, molecular characterization, and diversity and evolution of Amorphophallus-infecting viruses including three isolates of dasheen mosaic virus and three orthotospoviruses: mulberry vein banding associated virus (MVBaV), tomato zonate spot virus (TZSV) and impatiens necrotic spot virus (INSV). The results showed that DsMV is the dominant virus infecting Amorphophallus, mixed infections with DsMV and MVBaV to Amorphophallus were quite common in Yunnan province, China. This is the first report on infection of Amorphophallus with MVBaV, TZSV, and impatiens necrotic spot virus (INSV) in China. This work will help to develop an effective integrated management strategy to control the spread of Amorphophallus viral diseases.


Assuntos
Filogenia , Doenças das Plantas , China , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral/genética
15.
Trends Microbiol ; 32(7): 620-621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719702

RESUMO

The intimate relationships between plants and fungi provide an opportunity for the shuttling of viruses. Dai et al. recently discovered that a virus undergoes cross-kingdom transmission, and naturally spreads to both plant and fungal populations. This finding expands our understanding of viral host range, evolution, transmission, and disease management.


Assuntos
Fungos , Especificidade de Hospedeiro , Doenças das Plantas , Plantas , Plantas/microbiologia , Plantas/virologia , Fungos/fisiologia , Fungos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Micovírus/fisiologia , Micovírus/genética , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/genética , Interações Hospedeiro-Patógeno
16.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
17.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695734

RESUMO

Members of the family Fimoviridae are plant viruses with a multipartite negative-sense enveloped RNA genome (-ssRNA), composed of 4-10 segments comprising 12.3-18.5 kb in total, within quasi-spherical virions. Fimoviruses are transmitted to plants by eriophyid mites and induce characteristic cytopathologies in their host plants, including double membrane-bound bodies in the cytoplasm of virus-infected cells. Most fimoviruses infect dicotyledonous plants, and many cause serious disease epidemics. This is a summary of the ICTV Report on the family Fimoviridae, which is available at ictv.global/report/fimoviridae.


Assuntos
Genoma Viral , Doenças das Plantas , Vírus de Plantas , Doenças das Plantas/virologia , Animais , Vírus de Plantas/genética , Vírus de Plantas/classificação , Vírus de Plantas/fisiologia , RNA Viral/genética , Vírion/ultraestrutura , Plantas/virologia , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/classificação , Ácaros/virologia , Filogenia
18.
Microbiol Spectr ; 12(7): e0351323, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38785434

RESUMO

Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.


Assuntos
Citrus sinensis , MicroRNAs , Doenças das Plantas , Proteínas Virais , MicroRNAs/metabolismo , MicroRNAs/genética , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Citrus sinensis/virologia , Citrus sinensis/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Processamento Pós-Transcricional do RNA , Citrus/virologia , Citrus/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética
19.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698140

RESUMO

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Assuntos
Morus , Filogenia , Doenças das Plantas , Vírus de Plantas , Viroides , Morus/virologia , Viroides/genética , Viroides/isolamento & purificação , Viroides/classificação , Índia , Doenças das Plantas/virologia , RNA Viral/genética , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA