Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.253
Filtrar
1.
Sci Total Environ ; 803: 149990, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492488

RESUMO

Increased food demands and ceasing nutrient deposits have resulted in a great shortfall between the food supply and demand and would be worse in the years to come. Higher inputs of synthetic fertilizers on lands have resulted in environmental pollution, persistent changes in the soil ecology, and physicochemical conditions. This has greatly decreased the natural soil fertility thereby hindering agricultural productivity, human health, and hygiene. Bio-based resilient nutrient sources as wastewater-derived algae are promising as a complete nutrient for agriculture and have the potential to be used in soilless cultivations. Innovations in nano-fortification and nano-sizing of minerals and algae have the potential to facilitate nutrients bioavailability and efficacy for a multifold increase in productivity. In this context, various options on minerals nanofertilizer application in agricultural food production besides efficient biofertilizer have been investigated. Algal biofertilizer with the nanoscale application has huge prospects for further agriculture productivities and fosters suitable development.


Assuntos
Agricultura , Fertilizantes , Fertilizantes/análise , Humanos , Minerais , Plantas , Solo
2.
Sci Total Environ ; 804: 150162, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798730

RESUMO

Repurposing of brownfield sites is often promoted, because it is perceived that protecting the "green belt" limits damage to biodiversity; yet brownfield sites provide scarce habitats with limited disturbance, so conversely are also perceived to be ecologically valuable. Combining data from three national-scale UK biological monitoring schemes with location data on historical landfill sites, we show that species richness is positively associated with both the presence and increasing area of ex-landfill sites for birds, plants and several insect taxa. Assemblage rarity of birds is also positively associated with presence of ex-landfill sites. Species richness associated with ex-landfill sites declined over time for birds and insects but increased over time for plants. These findings suggest that development of brownfield sites may have unintended negative consequences for biodiversity, and imply that to minimise loss of biodiversity, brownfield site repurposing could be targeted towards smaller sites, or sites in areas with a high density of other brownfield sites.


Assuntos
Biodiversidade , Ecossistema , Animais , Aves , Conservação dos Recursos Naturais , Insetos , Plantas
4.
Sci Total Environ ; 806(Pt 1): 150432, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560451

RESUMO

Despite the impressive gain in agricultural production and greater availability of food, a large portion of the world population is affected by food shortages and nutritional imbalance. This is due to abiotic stresses encountered by plants as a result of environmental-driven perturbations, loss of viability of starter cultures (probiotics) for functional foods during storage as well as the vulnerability of farm produce to postharvest pathogens. The use of compatible solutes (e.g., trehalose, proline, etc.) has been widely supported as a solution to these concerns. Trehalose is one of the widely reported microbial- or plant-derived metabolites that help microorganisms (e.g., biocontrol agents, probiotics and plant growth-promoting bacteria) and plants to tolerate harsh environmental conditions. Due to its recent categorization as generally regarded as safe (GRAS), trehalose is an essential tool for promoting nutrition-sensitive agriculture by replacing the overuse of chemical agents (e.g., pesticides, herbicides). Therefore, the current review evaluated the progress currently made in the application of trehalose in sustainable agriculture. The challenges, opportunities, and future of this biometabolite in food security were highlighted.


Assuntos
Probióticos , Trealose , Desenvolvimento Vegetal , Plantas , Estresse Fisiológico
5.
Sci Total Environ ; 806(Pt 1): 150557, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582865

RESUMO

Plant and soil elemental ratios of carbon (C), nitrogen (N) and phosphorus (P) play a central role in shaping the composition and structure of microbial communities. However, the relationships between plant and soil elemental C:N:P ratios and microbial diversity are still poorly understood. Here, we evaluated the effects of C:N:P ratios in plant-soil systems on microbial diversity in a chronosequence of restored grasslands (1, 5, 10, 15, 25, and 30 years since restoration) on the Loess Plateau. We found that C and N concentrations, C:N and C:P ratios in leaf, root, soil and microbial biomass, bacterial and fungal diversity (Shannon-Wiener index) gradually increased with year since grassland restoration. Microbial C:N:P ratios ranged from 17.8:4.5:1 to 24.3:6.6:1, and C:P ratio increased from 17.8:1 at the 1-year site to 24.3:1 at the 30-year site, indicating the increasing P limitation for soil microorganisms during grassland development. Soil microbial diversity increased with root, soil, and microbial C and N concentrations, and decreased with P concentration (p < 0.05). Structural equation modeling indicated that soil and microbial C:N and N:P ratios had the greatest influences on soil bacterial and fungal diversity, and elemental C:N:P ratios had a greater effect on soil fungal than bacterial diversity. Our findings emphasize the importance of elemental C:N:P ratios on soil microbial diversity, which is critical for formulating policies for sustainable biodiversity conservation in terrestrial ecosystems.


Assuntos
Microbiota , Solo , Carbono/análise , China , Pradaria , Nitrogênio/análise , Plantas , Microbiologia do Solo
6.
Sci Total Environ ; 806(Pt 1): 150468, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583071

RESUMO

Airborne pollen monitoring is of global socio-economic importance as it provides information on presence and prevalence of allergenic pollen in ambient air. Traditionally, this task has been performed by microscopic investigation, but novel techniques are being developed to automate this process. Among these, DNA metabarcoding has the highest potential of increasing the taxonomic resolution, but uncertainty exists about whether the results can be used to quantify pollen abundance. In this study, it is shown that DNA metabarcoding using trnL and nrITS2 provides highly improved taxonomic resolution for pollen from aerobiological samples from the Netherlands. A total of 168 species from 143 genera and 56 plant families were detected, while using a microscope only 23 genera and 22 plant families were identified. NrITS2 produced almost double the number of OTUs and a much higher percentage of identifications to species level (80.1%) than trnL (27.6%). Furthermore, regressing relative read abundances against the relative abundances of microscopically obtained pollen concentrations showed a better correlation for nrITS2 (R2 = 0.821) than for trnL (R2 = 0.620). Using three target taxa commonly encountered in early spring and fall in the Netherlands (Alnus sp., Cupressaceae/Taxaceae and Urticaceae) the nrITS2 results showed that all three taxa were dominated by one or two species (Alnus glutinosa/incana, Taxus baccata and Urtica dioica). Highly allergenic as well as artificial hybrid species were found using nrITS2 that could not be identified using trnL or microscopic investigation (Alnus × spaethii, Cupressus arizonica, Parietaria spp.). Furthermore, perMANOVA analysis indicated spatiotemporal patterns in airborne pollen trends that could be more clearly distinguished for all taxa using nrITS2 rather than trnL. All results indicate that nrITS2 should be the preferred marker of choice for molecular airborne pollen monitoring.


Assuntos
Código de Barras de DNA Taxonômico , Pólen , Alérgenos , Monitoramento Ambiental , Humanos , Plantas , Estações do Ano
7.
Chemosphere ; 287(Pt 1): 131957, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34450367

RESUMO

An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Plantas , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Sci Total Environ ; 805: 150262, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536861

RESUMO

Plants are either recognized to produce nitrous oxide (N2O) or considered as a medium to transport soil-produced N2O. To date, it is not clear whether in their habitat plants conduit N2O produced in soil or are a natural source. We aimed to understand role of plants in N2O emissions in field conditions. Therefore, rubber plants (Ficus elastica) were planted in the field; then plant and soil chambers were deployed simultaneously to collect gas samples, and 15N site preference (SP) of N2O was evaluated. The mean SP values of plant and soil emitted N2O were -20.85 ± 2.8‰ and -8.85 ± 1.08‰, respectively, and were significantly different (p < 0.0001); while bulk 15N of plant and soil emitted N2O were -10.83 ± 3.33‰ and -22.56 ± 3.37‰, respectively and were similar (p = 0.06). In the current study, soil always acted as a source of N2O, while plants were both source and sink. Plant and soil N2O fluxes had significant positive exponential relationship with both soil and air temperature. Soil water-filled pore space (WFPS) had significant negative linear relationship with only soil N2O fluxes. Plant N2O fluxes had significant positive linear relationship with plant respiration rates and negative linear relationship with plant surface areas. Based on the relationship between plant respiration rates and N2O fluxes, we suggest that mitochondria are the possible sites of N2O formation in plant cells while the relationship between plant surface areas and N2O fluxes suggests that roots are the parts of its formation in natural and field conditions. Our results suggest that plants are a natural source of N2O even at field conditions and challenge a view that plants are a medium to transport soil-produced N2O into the atmosphere.


Assuntos
Óxido Nitroso , Solo , Atmosfera , Óxido Nitroso/análise , Plantas , Água
9.
Sci Total Environ ; 805: 150164, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537700

RESUMO

Snow cover plays an important role in maintaining ecosystems. However, knowledge on how snow cover phenology (SP) modulates ecosystem productivity (EP), especially for the lower- and higher-productivity ecosystems, is limited yet. The situation becomes more embarrassed when asking a more in-depth question as to the macroecological pattern of SP modulating EP - does this process act with the neighborhood effect common in ecology or any other? To answer this question, we proposed a new concept of "periconnection", by following the way of defining "teleconnection" but also exploring the potential effect from the surrounding sites. In the case study of two published data of plant dynamics (1999-2013) and SP (2001-2014), we made a series of new findings as follows. Over upper Northern Hemisphere, the lower- and higher-productivity ecosystems presented weaker trends of productivity increasing than the entire ecosystems did. But for the ecosystems of all these three types, their productivity was all more sensitive to the snow-onset than -end SP. Further, the interannual variations of their productivity was all more modulated by the SP around - the neighborhood effect, in principle, was detected but also with other novel traits. Such modulations occurred more to north in North America while more to south in North Eurasia - termed directional effect. The first two inferences added the common knowledge of SP modulating EP, while the in-depth question was solved with the last two coherent effects, which compose a new macroecological beyond-neighborhood effect - periconnection. As a creative theoretical term and its principle framework in macroecology, this basic concept is of referencing implication on extensively advancing various sphere-interaction fields at other scales.


Assuntos
Ecossistema , Neve , América do Norte , Plantas , Estações do Ano
10.
Sci Total Environ ; 805: 150314, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34543797

RESUMO

Mediterranean islands are considered especially vulnerable to biological invasions by alien plants. However, there is a lack of studies on island scale regarding the factors that determine alien plant's spatial distribution, and the way they affect invasion process. A roadside survey of alien plant species was conducted on Lesvos, the 8th largest island in Mediterranean basin. Data on species counts and explanatory variables were aggregated to a 1 sq. km vector grid and brought together into a single GIS layer. Alien species counts were modelled by using a Negative-binomial model while a Generalised Additive Model was used to examine possible non-linear relationships to the predictors by using splines. A subset of significant factors, related both to human activities and the environment, shaped the spatial distribution of aliens and influenced, in various ways, their future invasion outcome. Transformed areas with high levels of anthropogenic pressures and disturbances, including high population numbers, dense road network, ports, and intensive land use, as is the case for coastal zones, promoted the presence of alien species. Contrary, modified areas, such as grazed lands, seemed to restrict alien species occurrences, possibly due to the long grazing history these areas present, a regime in which aliens are not adapted. Alien plants presence was positively associated with high levels of NPP, diversity of geological substrates, and a west-facing aspect. Anthropogenic determinants of alien spatial patterns were primarily connected to increased propagule pressure, whereas environmental factors demonstrated the preference of alien plants for resource-rich environments.


Assuntos
Espécies Introduzidas , Plantas , Adaptação Fisiológica , Ecossistema , Humanos , Ilhas do Mediterrâneo
11.
Environ Pollut ; 292(Pt B): 118402, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695514

RESUMO

Submersed macrophytes accumulate large amounts of macro- and trace elements from the environment and, therefore, are frequently used as indicators of water pollution and tools to remove pollutants from contaminated waters. This study provides evidences that the quantity of macro- and trace elements accumulated in the macrophyte Ceratophyllum demersum depends strongly on the seasonality, on the vertical position of the plant material and on the biofilm cover. Element contents of macrophytes with and without biofilm cover and that of vertical plant sections were investigated by an ICP-MS technique in three different habitats, at the beginning and at the end of the vegetation period. Results demonstrated that the element concentrations of Ceratophyllum demersum dropped to one-half and one-eighth by the end of the summer; and the amount of certain elements in the lower part of plants were up to six times higher than in the upper and in plants with well-developed epiphytic microbial community 2-5-fold higher than in plants without biofilm. These results help in phytoremediation practice and in setting up future biomonitoring studies. When it is necessary to calculate the exact amount of elements which can be accumulated by plants in a polluted environment or should be removed from a contaminated water by harvesting macrophytes, it is of high importance to consider the month of the study, the plant parts harvested and the biofilm cover.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Biodegradação Ambiental , Biofilmes , Plantas , Oligoelementos/análise , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 292(Pt B): 118475, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763015

RESUMO

Plants detoxify toxic metal(loid)s by accumulating diverse metabolites. Beside scavenging excess reactive oxygen species (ROS) induced by metal(loid)s, some metabolites chelate metal(loid) ions. Classically, thiol-containing compounds, especially glutathione (GSH) and phytochelatins (PCs) are thought to be the major chelators that conjugate with metal(loid)s in the cytoplasm followed by transport and sequestration in the vacuole. In addition to this classical detoxification pathway, a role for secondary metabolites in metal(loid) detoxification has recently emerged. In particular, anthocyanins, a kind of flavonoids with ROS scavenging potential, contribute to enhanced arsenic tolerance in several plant species. Evidence is accumulating that, in analogy to GSH and PCs, anthocyanins may conjugate with arsenic followed by vacuolar sequestration in the detoxification event. Exogenous application or endogenous accumulation of anthocyanins enhances arsenic tolerance, leading to improved plant growth and productivity. The application of some plant hormones and signaling molecules stimulates endogenous anthocyanin synthesis which confers tolerance to arsenic stress. Anthocyanin biosynthesis is transcriptionally regulated by several transcription factors, including myeloblastosis (MYBs). The light-regulated transcription factor elongated hypocotyl 5 (HY5) also affects anthocyanin biosynthesis, but its role in arsenic tolerance remains elusive. Here, we review the mechanism of arsenic detoxification in plants and the potential role of anthocyanins in arsenic tolerance beyond the classical points of view. Our analysis proposes that anthocyanin manipulation in crop plants may ensure sustainable crop yield and food safety in the marginal lands prone to arsenic pollution.


Assuntos
Arsênio , Antocianinas , Arsênio/metabolismo , Arsênio/toxicidade , Regulação da Expressão Gênica de Plantas , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas , Plantas/metabolismo
13.
Chemosphere ; 286(Pt 1): 131564, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34298298

RESUMO

Constructed wetlands (CWs) are economical, efficient, and sustainable wastewater treatment method. Substrates in CWs inextricably link with the other key components and significantly influence the performance and sustainability of CWs. Gradually, CWs have been applied to treat more complex contaminants from different fields, thus has brought forward new demand on substrates for enhancing the performance and sustainability of CWs. Various materials have been used as substrates in CWs, and their individual characteristics and application advantages have been extensively studied in recent years. Therefore, this review summarizes the development, function mechanisms (e.g., filtration, adsorption, electron supply, supporting plant growth and microbial reproduction), categories, and applications of substrates in CWs. The interaction mechanisms of substrates with contaminants/plants/microorganisms are comprehensively described, and the characteristics and advantages of different substrate categories (e.g., Natural mineral materials, chemical products, biomass materials, industrial and municipal by-products, modified functional materials, and novel materials) are critically evaluated. Meanwhile, the influences of substrate layer arrangement and synergism on contaminants removal are firstly systematically reviewed. Furthermore, further research about substrates (e.g., clogging, life cycle assessment/management, internal relationship between components) should be systematically carried out for improving efficiency and sustainability of CWs.


Assuntos
Purificação da Água , Áreas Alagadas , Plantas , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
14.
Food Chem ; 371: 131192, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592627

RESUMO

The extraction of bioactive compounds from plant materials has attracted much attention due to their potential therapeutic effects. This article reviews the basic principles, characteristics, and recent applications of infrared assisted extraction (IAE) of bioactive compounds from plant materials. The advantages and disadvantages of IAE are considered, and operation mode and technological improvements, processes, solvents used and other future developments are identified. The review indicated that IAE was a simple, rapid, and cost-effective technique with the capacity for industrial scale application. Future research should focus on energy consumption reduction, green chemistry extraction processes, simplified operation steps, intelligent extraction process, and the establishment of kinetic and thermodynamic models. This article provides a comprehensive understanding of the principles and applications of IAE for the preparation of bioactive compounds, which will be of benefit to researchers and users of the technology.


Assuntos
Extratos Vegetais , Plantas , Solventes
15.
Environ Pollut ; 292(Pt A): 118350, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648832

RESUMO

Light pollution represents a widespread long-established human-made disturbance and an important threat to nocturnal pollination. Distance from the niche centroid where optimal environmental conditions join may be related to species sensitivity to habitat change. We estimated the environmental suitability of the plant species Erythrostemon gilliesii and of its guild of hawkmoth pollinators. We considered the overlap of suitability maps of both partners as the environmental suitability of the interaction. We used a three-year record of ten E. gilliesii populations to calculate pollination intensity as the number of individuals that received pollen per population. In addition, for each population, we measured the distance to the high light pollution source around a buffer of 15 km radius. Finally, we predicted pollination intensity values for environmental suitability ranging from 0 to 1, and distance to high light pollution sources ranging from 0 to 56 Km. Pollination intensity decreased along an axis of increasing environmental suitability and increased with distance to sources of light pollution. The highest values of pollination intensity were observed at greatest distances to sources of light pollution and where environmental suitability of the interaction was lowest. The prediction model evidenced that, when environmental suitability was lowest, pollination intensity increased with distance to sources of high light pollution. However, when environmental suitability was intermediate or high, pollination intensity decreased away and until 28 km from the sources of high light pollution. Beyond 28 km from the sources of high light pollution, pollination intensity remained low and constant. Populations under conditions of low environmental suitability might be more likely to respond to disturbances that affect pollinators than populations under conditions of high environmental suitability.


Assuntos
Flores , Polinização , Ecossistema , Humanos , Plantas , Pólen
16.
Sci Total Environ ; 805: 150344, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818784

RESUMO

Green roofs (GR) can be used as a nature-based solution to tackle eco-environmental problems caused by climate change and rapid urbanization. The substrate in the GRs is the growing medium for vegetation, and its properties directly affect the ecosystem services of GRs. To investigate the characteristic changes of an exposed substrate after the removal of vegetation, a one-year field experiment was conducted. Substrate properties were comprehensively compared for areas in GR that were planted with Sedum lineare and those with bare substrate. Results show that vegetation cover not only prevented substrate loss by 5.14% (p < 0.05) but also protected the chemical, microbial, and physical properties of the substrate. Moreover, the structure of the substrate changed, as evidenced by a significant increase in fine sand (p < 0.05). The results highlight that attention should be paid to maintaining vegetation cover during GR management. In addition, extensive GRs may not be suitable for fallowing. Once a GR has been established, it needs regular maintenance. Otherwise, the ecological and economic benefits of the GR may be reduced. The findings of the present study can be used to determine the life-cycle costs. Further research should focus on differences in the substrate loss rates, runoff, and temperatures of the substrates under exposure and vegetation cover. The microbial changes after revegetation should also be studied to clarify the role of vegetation in GR ecosystems. The present study provides a reference for improving GR management and ensuring their sustainability.


Assuntos
Ecossistema , Sedum , Conservação dos Recursos Naturais , Nutrientes , Plantas , Temperatura
17.
Sci Total Environ ; 804: 150059, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508935

RESUMO

Adaptive responses of plants are important not only for local processes in populations and communities but also for global processes in the biosphere through the primary production of ecosystems. In recent years, the concept of environmental hormesis has been increasingly used to explain the adaptive responses of living organisms, including plants, to low doses of natural factors, both abiotic and biotic, as well as various anthropogenic impacts. However, the issues of whether plant hormesis is similar/different when it is induced by mild stressors having different specific effects and what is the contribution of hormetic stimulation of non-specific and specific adaptive mechanisms in plant resilience to strong stressors (i.e., preconditioning) remains unclear. This paper analyses hormetic stimulation of non-specific and specific adaptive mechanisms in plants and its significance for preconditioning, the phenomenon of the hormetic trade-off for these mechanisms, and the position of hormetic stimulation of non-specific and specific adaptive mechanisms in the system of plant adaptations to environmental challenges. The analysis has shown that both non-specific and specific adaptive mechanisms of plants can be stimulated hormetically by mild stressors and are important for plant preconditioning. Due to limited plant resources, non-specific and specific adaptive mechanisms have hormetic trades-offs 1 (hormesis accompanied by the deterioration of some plant traits) and 2 (hormesis of some plant traits with the invariability of others). At the same time, hormetic trade-off 2 is observed much more often than hormetic trade-off 1, at least, this was demonstrated here for non-specific adaptive responses of plants. The hormetic stimulation of non-specific and specific adaptive mechanisms is part of the inducible adaptation of plants caused by stress factors and is an adaptation to random (unpredictable) changes in the environment.


Assuntos
Ecossistema , Hormese , Adaptação Fisiológica , Plantas
18.
Sci Total Environ ; 802: 149788, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461479

RESUMO

In Mexico, millions of tons of mining wastes are deposited in the open pit. Their content in potentially toxic elements (PTE) represents an environmental risk. In the tailings, pioneer plant communities are established, associated with a determined diversity of fungi; plants, and fungi are fundamental in the natural rehabilitation of mining wastes. The objective was to evaluate the impact of the natural establishment of two plant species on the microbial activity, on the composition of the fungal community, and on the mitigation of the effect of PTE in a contaminated mine tailing. In a tailing, we selected three sites: one non-vegetated; one vegetated by Reseda luteola, and one vegetated by Asphodelus fistulosus. In the substrates, we conducted a physical and chemical characterization; we evaluated the enzymatic activity, the mineralization of the carbon, and the concentration of PTE. We also determined the fungal diversity in the substrates and in the interior of the roots, and estimated the accumulation of carbon, nitrogen, phosphorus and PTE in plant tissues. The tailings had a high percentage of sand; the non-vegetated site presented the highest electric conductivity, and the plant cover reduced the concentration of PTE in the substrates. Plants increased the carbon content in tailings. The enzymatic activities of ß-glucosidase and dehydrogenase, and the mineralization of carbon were highest at the site vegetated with A. fistulosus. Both plant species accumulated PTE in their tissues and exhibited potential in the phytoremediation of lead (Pb), cadmium (Cd), and copper (Cu). Fungal diversity was more elevated at the vegetated sites than in the bare substrate. Ascomycota prevailed in the substrates; the substrates and the plants shared some fungal taxa, but other taxa were specific. The plant coverage and the rhizosphere promoted the natural attenuation and a rehabilitation of the extreme conditions of the mining wastes, modulated by the plant species.


Assuntos
Metais Pesados , Micobioma , Poluentes do Solo , Metais Pesados/análise , Mineração , Plantas , Rizosfera , Solo , Poluentes do Solo/análise
19.
Sci Total Environ ; 802: 149796, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464787

RESUMO

Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.


Assuntos
Arsênio , Poluentes do Solo , Arseniatos/análise , Arsênio/análise , Poluição Ambiental , Humanos , Fósforo , Plantas , Solo , Poluentes do Solo/análise
20.
Acta Trop ; 225: 106226, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752781

RESUMO

Vectors and intermediate hosts of globally impactful human parasites are sensitive to changes in the ecological communities in which they are embedded. Sites of endemic transmission of human schistosome can also be invaded by nonnative species, especially aquatic plants (macrophytes). We tested the effects on macrophyte invasions on experiment snail and schistosome populations created in 100 L mesocosm tanks. We established macrophyte-free mesocosms and those containing one of four widespread macrophyte species that are inedible to snails (duckweed, hornwort, water lettuce, or water hyacinth) and then tracked edible resources (periphyton algae) and the abundance, reproduction, and infection of snail intermediate hosts for 16 weeks. We predicted that the three floating macrophytes would reduce periphyton, thereby reducing snail reproduction, abundance, and infections. In contrast, we predicted that hornwort, which is submerged and provides substrate for periphyton growth, would increase snail reproduction and abundance. As predicted, all floating macrophytes decreased periphyton, but only water hyacinth significantly decreased snail reproduction and abundance. Snail abundance increased significantly only with water lettuce. We hypothesize that this unanticipated increase in snails occurred because water lettuce produced abundant and/or high quality detritus, subsidizing snails despite low periphyton availability. Unfortunately, we detected too few infections to analyze. Aquatic macrophytes exert strong species-specific effects on snail populations. Therefore, efforts to manage invasive plants in endemic sites should evaluate changes in resources, snails, and transmission potential. We recommend caution with management efforts that produce large amounts of detritus, which might stimulate snail populations and therefore risk of human exposure.


Assuntos
Biomphalaria , Schistosoma mansoni , Animais , Humanos , Plantas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...