Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87.417
Filtrar
1.
ACS Appl Bio Mater ; 7(7): 4690-4701, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38952293

RESUMO

Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.


Assuntos
Dopamina , Pontos Quânticos , Dopamina/metabolismo , Pontos Quânticos/química , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Plantas/metabolismo , Plantas/química , Carbono/química
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000100

RESUMO

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Assuntos
Ferro , Fósforo , Plantas , Solo , Fósforo/metabolismo , Ferro/metabolismo , Solo/química , Plantas/metabolismo , Nutrientes/metabolismo , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Microbiologia do Solo
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000099

RESUMO

Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.


Assuntos
Cobre , Plantas , Cobre/metabolismo , Cobre/deficiência , Plantas/metabolismo , Homeostase , Estresse Oxidativo , Estresse Fisiológico , Transporte Biológico
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000174

RESUMO

Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Fenóis , Plantas , Fenóis/metabolismo , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000226

RESUMO

E3 ubiquitin ligases (UBLs), as enzymes capable of specifically recognizing target proteins in the process of protein ubiquitination, play crucial roles in regulating responses to abiotic stresses such as drought, salt, and temperature. Abscisic acid (ABA), a plant endogenous hormone, is essential to regulating plant growth, development, disease resistance, and defense against abiotic stresses, and acts through a complex ABA signaling pathway. Hormone signaling transduction relies on protein regulation, and E3 ubiquitin ligases play important parts in regulating the ABA pathway. Therefore, this paper reviews the ubiquitin-proteasome-mediated protein degradation pathway, ABA-related signaling pathways, and the regulation of ABA-signaling-pathway-related genes by E3 ubiquitin ligases, aiming to provide references for further exploration of the relevant research on how plant E3 ubiquitin ligases regulate the ABA pathway.


Assuntos
Ácido Abscísico , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Ubiquitinação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000260

RESUMO

Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.


Assuntos
Bactérias , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Plantas , Vesículas Extracelulares/metabolismo , Bactérias/metabolismo , Humanos , Plantas/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Leveduras/metabolismo , Portadores de Fármacos/química
7.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000361

RESUMO

Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.


Assuntos
Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Plantas , Transdução de Sinais , Plantas/metabolismo , Plantas/imunologia , Plantas/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Lipídeos , Ciclopentanos/metabolismo
8.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000414

RESUMO

Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Metabolismo Secundário , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Plantas/metabolismo , Plantas/genética , Terpenos/metabolismo , Fotoperíodo , Estresse Fisiológico
9.
Plant Cell Rep ; 43(8): 193, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008125

RESUMO

Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.


Assuntos
Homeostase , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Tolerância ao Sal , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Antioxidantes/metabolismo , Oxirredução , Plantas/metabolismo , Salinidade
10.
Physiol Plant ; 176(4): e14418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39004808

RESUMO

Plant organelle transcription has been studied for decades. As techniques advanced, so did the fields of mitochondrial and plastid transcriptomics. The current view is that organelle genomes are pervasively transcribed, irrespective of their size, content, structure, and taxonomic origin. However, little is known about the nature of organelle noncoding transcriptomes, including pervasively transcribed noncoding RNAs (ncRNAs). Next-generation sequencing data have uncovered small ncRNAs in the organelles of plants and other organisms, but long ncRNAs remain poorly understood. Here, we argue that publicly available third-generation long-read RNA sequencing data from plants can provide a fine-tuned picture of long ncRNAs within organelles. Indeed, given their bloated architectures, plant mitochondrial genomes are well suited for studying pervasive transcription of ncRNAs. Ultimately, we hope to showcase this new avenue of plant research while also underlining the limitations of the proposed approach.


Assuntos
RNA Antissenso , RNA Longo não Codificante , RNA de Plantas , RNA Longo não Codificante/genética , RNA Antissenso/genética , RNA de Plantas/genética , Plantas/genética , Organelas/genética , Organelas/metabolismo , RNA-Seq/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética
11.
Physiol Plant ; 176(4): e14388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946634

RESUMO

Plants can experience a variety of environmental stresses that significantly impact their fitness and survival. Additionally, biotic stress can harm agriculture, leading to reduced crop yields and economic losses worldwide. As a result, plants have developed defense strategies to combat potential invaders. These strategies involve regulating redox homeostasis. Several studies have documented the positive role of plant antioxidants, including Ascorbate (Asc), under biotic stress conditions. Asc is a multifaceted antioxidant that scavenges ROS, acts as a co-factor for different enzymes, regulates gene expression, and facilitates iron transport. However, little attention has been given to Asc and its transport, regulatory effects, interplay with phytohormones, and involvement in defense processes under biotic stress. Asc interacts with other components of the redox system and phytohormones to activate various defense responses that reduce the growth of plant pathogens and promote plant growth and development under biotic stress conditions. Scientific reports indicate that Asc can significantly contribute to plant resistance against biotic stress through mutual interactions with components of the redox and hormonal systems. This review focuses on the role of Asc in enhancing plant resistance against pathogens. Further research is necessary to gain a more comprehensive understanding of the molecular and cellular regulatory processes involved.


Assuntos
Ácido Ascórbico , Reguladores de Crescimento de Plantas , Plantas , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Ácido Ascórbico/metabolismo , Plantas/metabolismo , Plantas/imunologia , Antioxidantes/metabolismo , Oxirredução , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
13.
Environ Monit Assess ; 196(7): 675, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951302

RESUMO

Vegetation is an important link between land, atmosphere, and water, making its changes of great significance. However, existing research has predominantly focused on long-term vegetation changes, neglecting the intra-annual variations of vegetation. Hence, this study is based on the Enhanced Vegetation Index (EVI) data from 2000 to 2022, with a time step of 16 days, to analyze the intra-annual patterns of vegetation changes in China. The average intra-annual EVI values for each municipal-level administrative region were calculated, and the time-series k-means clustering algorithm was employed to divide these regions, exploring the spatial variations in China's intra-annual vegetation changes. Finally, the ridge regression and random forest methods were utilized to assess the drivers of intra-annual vegetation changes. The results showed that: (1) China's vegetation status exhibits a notable intra-annual variation pattern of "high in summer and low in winter," and the changes are more pronounced in the northern regions than in the southern regions; (2) the intra-annual vegetation changes exhibit remarkable regional disparities, and China can be optimally clustered into four distinct clusters, which align well with China's temperature and precipitation zones; and (3) the intra-annual vegetation changes demonstrate significant correlations with meteorological factors such as dew point temperature, precipitation, maximum temperature, and sea-level pressure. In conclusion, our study reveals the characteristics, spatial patterns and driving forces of intra-annual vegetation changes in China, which contribute to explaining ecosystem response mechanisms, providing valuable insights for ecological research and the formulation of ecological conservation and management strategies.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , China , Estações do Ano , Plantas , Análise por Conglomerados , Ecossistema
14.
Sci Rep ; 14(1): 15657, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977726

RESUMO

Understanding the distribution of the plant species of an unexplored area is the utmost need of the present-day. In order to collect vegetation data, Quadrat method was used having size of 1 m2. The composite soil samples from each site were tested for various edaphic properties. PC-ORD v.5 was used for the classification of the vegetation while CANOCO v.5.1 was used for ordination of the data and to find out the complex relationship between plants and environment. Survey was conducted during summer season and a total of 216 herbaceous species were recorded from forty different sites of District Kohat, Pakistan. Cluster Analysis (CA) and Two-Way Cluster Analysis (TWCA) classified the vegetation of forty sites into six major plant groups i.e., 1. Paspalum paspalodes, Alternanthera sessilis, Typha domingensis, 2. Cynodon dactylon, Parthenium hysterophorus, Brachiaria ramosa, 3. Cynodon dactylon, Eragrostis minor, Cymbopogon jwarancusa, 4. Cymbopogon jwarancusa, Aristida adscensionis, Boerhavia procumbens, 5. Cymbopogon jwarancusa, Aristida adscensionis, Pennisetum orientale and 6. Heteropogon contortus, Bothriochloa ischaemum, Chrysopogon serrulatus. They were named after the dominant species based on their Importance Value (IV). The detrended correspondence analysis (DCA) analysis further confirmed the vegetation classification. Canonical correspondence analysis (CCA) indicated that the species distribution in the area was strongly affected by various environmental factors including status, soil characteristics, topography and altitude.


Assuntos
Plantas , Estações do Ano , Paquistão , Plantas/classificação , Análise Multivariada , Solo/química , Análise por Conglomerados , Ecossistema , Biodiversidade , Clima Tropical
15.
Curr Microbiol ; 81(9): 270, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012372

RESUMO

Plant development and yield are severely hampered by climate change. Plants are very prone to a variety of abiotic stressors during growth, making them susceptible to destruction which can reduce the productivity by 20-60%. These stresses generate reactive oxygen species (ROS), which damage lipids, proteins, and nucleic acids. Microalgae and plant growth-promoting bacteria (PGPB) are remarkably effective at reducing the effects of salt stress and promoting plant growth, thereby increasing agricultural yield, and helping ensure global food security. Through a variety of mechanisms, including the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophores, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, and modulation of antioxidants defense machinery under abiotic stresses promote plant growth after inoculation of PGPB and microalgae. These microorganisms also maintain ion homeostasis, offer osmotic balance, stimulate genes that respond to salt and drought, rewire the metabolism, modify the transcription of ion transporter genes, and more. To counteract the negative consequences of salinity stress, this study summarizes the effects of PGPB- microalgae along with a tentative protective mechanism during salinity stress for sustainable agriculture.


Assuntos
Microalgas , Estresse Salino , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Plantas/metabolismo , Plantas/microbiologia , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo
16.
Methods Mol Biol ; 2842: 193-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012597

RESUMO

Epigenetic editing enables the locus-specific manipulation of chromatin modifications. It allows the functional analysis of interactions between chromatin modifications and epigenetically stable gene expression states, thus establishing causal relationships, where previously correlations were suspected. Here, we describe the procedures for gene-specific epigenetic editing in plants that are based on targeting a histone modifier using an inactive dCas9 fusion protein that is recruited by a set of three distinct single guide RNAs (sgRNAs) that all target a region within the promoter of the target gene. We outline design principles and emphasize the need for suitable control constructs. In summary, the protocol will be widely useful for plant scientists looking to manipulate chromatin modifications in a locus-specific manner.


Assuntos
Epigênese Genética , Edição de Genes , Regulação da Expressão Gênica de Plantas , Histonas , Edição de Genes/métodos , Histonas/metabolismo , Histonas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas , Código das Histonas , Cromatina/genética , Cromatina/metabolismo , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas/genética , Plantas/genética , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
17.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990962

RESUMO

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Assuntos
Biodiversidade , Carbono , Gases de Efeito Estufa , Plantas , Solo , Solo/química , Gases de Efeito Estufa/análise , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Ecossistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Metano/metabolismo , Efeito Estufa
18.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999006

RESUMO

Arsenic (As) speciation analysis is scientifically relevant due to the pivotal role the As chemical form plays in toxicity, which, in turn, directly influences the effect it has on the environment. The objective of this study was to develop and optimize a method tailored for studying As compounds in plant samples. Different extraction procedures and HPLC methods were explored to assess their efficiency, determine mass balance, and improve the resolution of compounds in the chromatograms. Conventionally applied anion-exchange chromatography facilitated the separation of well-documented As compounds in the extracts corresponding to 19 to 82% of As present in extracts. To gain insight into compounds which remain undetectable by anion chromatography (18 to 81% of As in the extracts), but still possibly metabolically relevant, we explored an alternative chromatographic approach. The procedure of sample purification and preconcentration through solid-phase extraction, facilitating the detection of those minor As compounds, was developed. The system was further refined to achieve an online 2D-RP-HPLC system, which was employed to analyze the extracts more comprehensively with ICP and ESI MS. Using this newly developed method, As(III)-phytochelatins, along with other arseno-thio-compounds, were detected and identified in extracts derived from the tree roots of seedlings grown in the presence of As(III) and As(V), and a group of arseno lipids was detected in the roots of plants exposed to As(V).


Assuntos
Arsênio , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Arsênio/análise , Arsênio/isolamento & purificação , Extração em Fase Sólida/métodos , Arsenicais/análise , Arsenicais/química , Arsenicais/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/química , Plantas/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo
19.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999125

RESUMO

Interest in measuring major and trace elements in plants has increased in recent years because of growing concerns about the elements' contribution to daily intakes or the health risks posed by ingesting vegetables contaminated by potentially toxic elements. The recent advances in using inductively coupled plasma atomic emission spectrometry (ICP-OES) to measure major and trace elements in plant samples are reviewed in the present work. The sample preparation before instrumental determination and the main advantages and limitations of ICP-OES are described. New trends in element extraction in liquid solutions using fewer toxic solvents and microextractions are observed in recently published literature. Even though ICP-OES is a well-established and routine technique, recent innovations to increase its performance have been found. Validated methods are needed to ensure the obtaining of reliable results. Much research has focused on assessing principal figures of merit, such as limits of detection, quantification, selectivity, working ranges, precision in terms of repeatability and reproducibility, and accuracy through spiked samples or certified reference materials analysis. According to the published literature, the ICP-OES technique, 50 years after the release of the first commercially available equipment, remains a powerful and highly recommended tool for element determination on a wide range of concentrations.


Assuntos
Plantas , Espectrofotometria Atômica , Oligoelementos , Oligoelementos/análise , Espectrofotometria Atômica/métodos , Plantas/química , Reprodutibilidade dos Testes
20.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999954

RESUMO

Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...