Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.364
Filtrar
1.
Front Public Health ; 12: 1402511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993703

RESUMO

This article adopts a socio-economic and political lens to elucidate the interplay of factors that heighten the vulnerability of Syrian refugee agricultural workers and their exposure to pesticides in Lebanon. It provides a comprehensive understanding for the interconnected social, political and economic factors at the global, regional, national and local levels and how they increase the vulnerability of Syrian refugee agricultural workers, particularly their exposure to pesticides. The global factors highlight the shifts from colonialism to state-controlled economies to neoliberal policies. These changes have prioritized the interests of large agricultural schemes and multinationals at the expense of small and medium-sized agriculture. Consequently, there has been a boost in pesticides demand, coupled with weak regulations and less investment in agriculture in the countries of the Global South. The article explains how the dynamic interaction of climate change and conflicts in the Middle East and North Africa region has negatively impacted the agriculture sector and food production, which led to an increased potential for pesticide use. At the national and local levels, Lebanon's social, political and economic policies have resulted in the weakening of the agricultural sector, the overuse of pesticides, and the intensification of the Syrian refugee agricultural workers' vulnerability and exposure to pesticides. The article recommends that researchers, policymakers, and practitioners adopt a political-economic-social lens to analyze and address the full dynamic situation facing migrant and refugee workers in Lebanon and other countries and promote equity in the agricultural sector globally.


Assuntos
Fazendeiros , Exposição Ocupacional , Praguicidas , Política , Refugiados , Líbano , Humanos , Síria , Fazendeiros/estatística & dados numéricos , Agricultura , Fatores Socioeconômicos
2.
Environ Geochem Health ; 46(9): 317, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002095

RESUMO

Chiral pesticides account for about 40% of the total pesticides. In the process of using pesticides, it will inevitably flow into the surface water and even penetrate into the groundwater through surface runoff and other means, as a consequence, it affects the water environment. Although the enantiomers of chiral pesticides have the same physical and chemical properties, their distribution, ratio, metabolism, toxicity, etc. in the organism are often different, and sometimes even show completely opposite biological activities. In this article, the selective fate of different types of chiral pesticides such as organochlorine, organophosphorus, triazole, pyrethroid and other chiral pesticides in natural water bodies and sediments, acute toxicity to aquatic organisms, chronic toxicity and other aspects are summarized to further reflect the risks between the enantiomers of chiral pesticides to non-target organisms in the water environment. In this review, we hope to further explore its harm to human society through the study of the toxicity of chiral pesticide enantiomers, so as to provide data support and theoretical basis for the development and production of biochemical pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Estereoisomerismo , Organismos Aquáticos/efeitos dos fármacos , Animais , Humanos
3.
Ecotoxicol Environ Saf ; 281: 116646, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954906

RESUMO

Agricultural production relies heavily on the use of pesticides, which may accumulate in soil and water, posing a significant threat to the global ecological environment and biological health. Butachlor is a commonly used herbicide and environmental pollutant, which has been linked to liver and kidney damage, as well as neurological abnormalities. However, the potential impact of butachlor exposure on the gut microbiota remains understudied. Thus, our aim was to investigate the potential negative effects of butachlor exposure on host health and gut microbiota. Our results demonstrated that butachlor exposure significantly reduced the host antioxidant capacity, as evidenced by decreased levels of T-AOC, SOD, and GSH-Px, and increased levels of MDA. Serum biochemical analysis also revealed a significant increase in AST and ALT levels during butachlor exposure. Microbial analysis showed that butachlor exposure significantly reduced the abundance and diversity of gut microbiota. Furthermore, butachlor exposure also significantly altered the gut microbial composition. In conclusion, our findings indicate that butachlor exposure can have detrimental health effects, including dysregulation of antioxidant enzymes, abnormalities in transaminases, and hepatointestinal damage. Furthermore, it disrupts the gut microbial homeostasis by altering microbial composition and reducing diversity and abundance. In the context of the increasingly serious use of pesticides, this study will help provide impetus for standardizing the application of pesticides and reducing environmental pollution.


Assuntos
Acetanilidas , Microbioma Gastrointestinal , Homeostase , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Animais , Acetanilidas/toxicidade , Herbicidas/toxicidade , Praguicidas/toxicidade , Masculino , Antioxidantes/metabolismo , Poluentes Ambientais/toxicidade
4.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955078

RESUMO

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Assuntos
Clorofila , Clorpirifos , Clorofila/metabolismo , Clorofila/química , Clorpirifos/metabolismo , Clorpirifos/toxicidade , Fluorescência , Praguicidas/toxicidade , Praguicidas/metabolismo , Fotossíntese/efeitos dos fármacos , Dimetoato/toxicidade , Dimetoato/metabolismo , Espectrometria de Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Monitoramento Ambiental/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
5.
Chem Res Toxicol ; 37(7): 1071-1085, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958636

RESUMO

Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Praguicidas , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Praguicidas/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/metabolismo , Animais
6.
BMC Microbiol ; 24(1): 273, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044145

RESUMO

BACKGROUND: Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS: The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS: This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Praguicidas/farmacologia , Mariposas/microbiologia , Mariposas/efeitos dos fármacos , Simbiose , RNA Ribossômico 16S/genética , Microbiota/efeitos dos fármacos , Tetraciclina/farmacologia
8.
Environ Health Perspect ; 132(7): 75003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046250

RESUMO

BACKGROUND: Environmental contamination by fluorinated chemicals, in particular chemicals from the per- and polyfluoroalkyl substances (PFAS) class, has raised concerns around the globe because of documented adverse impacts on human health, wildlife, and ecosystem quality. Recent studies have indicated that pesticide products may contain a variety of chemicals that meet the PFAS definition, including the active pesticide ingredients themselves. Given that pesticides are some of the most widely distributed pollutants across the world, the legacy impacts of PFAS addition into pesticide products could be widespread and have wide-ranging implications on agriculture and food and water contamination, as well as the presence of PFAS in rural environments. OBJECTIVES: The purpose of this commentary is to explore different ways that PFAS can be introduced into pesticide products, the extent of PFAS contamination of pesticide products, and the implications this could have for human and environmental health. METHODS: We submitted multiple public records requests to state and federal agencies in the United States and Canada and extracted relevant data from those records. We also compiled data from publicly accessible databases for our analyses. DISCUSSION: We found that the biggest contributor to PFAS in pesticide products was active ingredients and their degradates. Nearly a quarter of all US conventional pesticide active ingredients were organofluorines and 14% were PFAS, and for active ingredients approved in the last 10 y, this had increased to 61% organofluorines and 30% PFAS. Another major contributing source was through PFAS leaching from fluorinated containers into pesticide products. Fluorination of adjuvant products and "inert" ingredients appeared to be limited, although this represents a major knowledge gap. We explored aspects of immunotoxicity, persistence, water contamination, and total fluorine load in the environment and conclude that the recent trend of using fluorinated active ingredients in pesticides may be having effects on chemical toxicity and persistence that are not given adequate oversight in the United States. We recommend a more stringent risk assessment approach for fluorinated pesticides, transparent disclosure of "inert" ingredients on pesticide labels, a complete phase-out of post-mold fluorination of plastic containers, and greater monitoring in the United States. https://doi.org/10.1289/EHP13954.


Assuntos
Fluorocarbonos , Praguicidas , Praguicidas/análise , Fluorocarbonos/análise , Humanos , Poluentes Ambientais/análise , Estados Unidos , Canadá , Monitoramento Ambiental , Poluição Ambiental , Exposição Ambiental
9.
Bull Environ Contam Toxicol ; 113(1): 8, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981915

RESUMO

Monitoring wildlife exposure to biological hazards is a critical component of the wildlife risk assessment. In this study 38 hair samples were collected from 8 different species from ten districts of Russian Far East and Siberia and analysed for the presence of organochlorine pesticides (OCP). 50% of the samples were contaminated with - p, p'-DDT, α-HCH and DDD. DDT was the main contaminant found in 13 sample at concentrations range of 14.3 to 369.5 pg/mg hair, mean 91.9 ± 89.7 pg/mg. α-HCH was detected in three samples with the concentrations range 29.9-180.2 pg/mg. The p, p'-DDD was found only in one hair sample of Siberian roe deer from Altai region at 52.6 pg/mg. The exposure level is depended on animals habitat location. The most contaminated region is Terney district which is in the proximity to the borders with China and North Korea where OCP are still in use.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Cabelo , Hidrocarbonetos Clorados , Praguicidas , Animais , Hidrocarbonetos Clorados/análise , Cabelo/química , Sibéria , Praguicidas/análise , Poluentes Ambientais/análise , Federação Russa , Mamíferos , DDT/análise , Herbivoria
10.
Environ Health ; 23(1): 65, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033265

RESUMO

OBJECTIVE: To investigate any connections between urinary organophosphorus pesticide (OPP) metabolites and adiposity measures. METHODS: In this study, data from the National Health and Nutrition Examination Survey (NHANES) projects from 2003 to 2008, 2011 to 2012, and 2015 to 2018 were analysed. Obesity was defined as a body mass index (BMI) of 30 kg/m² or higher. Abdominal obesity was defined as a waist circumference (WC) over 102 cm for men and 88 cm for women. Four urinary OPP metabolites (dimethyl phosphate [DMP], diethyl phosphate [DEP], dimethyl phosphorothioate [DMTP], and diethyl phosphorothioate [DETP]) and adiposity measures were examined using multiple linear regression and logistic regression analyses. The correlations between a variety of urinary OPP metabolites and the prevalence of obesity were investigated using weighted quantile sum regression and quantile g-computation regression. RESULTS: In this analysis, a total of 9,505 adults were taken into account. There were 49.81% of male participants, and the average age was 46.00 years old. The median BMI and WC of the subjects were 27.70 kg/m2 and 97.10 cm, respectively. Moreover, 35.60% of the participants were obese, and 54.42% had abdominal obesity. DMP, DMTP, and DETP were discovered to have a negative correlation with WC and BMI in the adjusted models. DMP (OR = 0.93 [95% CI: 0.89-0.98]), DEP (OR = 0.94 [95% CI: 0.90-0.99]), DMTP (OR = 0.91 [95% CI: 0.86-0.95]), and DETP (OR = 0.85 [95% CI: 0.80-0.90]) exhibited negative associations with obesity prevalence. Similar correlations between the prevalence of abdominal obesity and the urine OPP metabolites were discovered. Moreover, the mixture of urinary OPP metabolites showed negative associations with adiposity measures, with DMTP and DETP showing the most significant effects. CONCLUSION: Together, higher levels of urinary OPP metabolites in the urine were linked to a decline in the prevalence of obesity.


Assuntos
Inquéritos Nutricionais , Obesidade , Compostos Organofosforados , Praguicidas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Obesidade/epidemiologia , Compostos Organofosforados/urina , Praguicidas/urina , Estados Unidos/epidemiologia , Poluentes Ambientais/urina , Adulto Jovem , Idoso , Índice de Massa Corporal , Prevalência , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
11.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998975

RESUMO

The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography-tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method's practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.


Assuntos
Metabolômica , Praguicidas , Máquina de Vetores de Suporte , Drogas Veterinárias , Zea mays , Zea mays/química , Metabolômica/métodos , Praguicidas/análise , Drogas Veterinárias/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Análise de Componente Principal , Contaminação de Alimentos/análise
12.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000054

RESUMO

Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.


Assuntos
Disruptores Endócrinos , Fertilidade , Praguicidas , Humanos , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Masculino , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/efeitos adversos , Animais , Fertilidade/efeitos dos fármacos , Infertilidade Masculina/induzido quimicamente , Exposição Ambiental/efeitos adversos , Reprodução/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos
13.
Sci Rep ; 14(1): 15907, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987625

RESUMO

Agricultural social services (ASS) play an important role in improving the efficiency of agricultural operations, reducing agricultural production costs, and promoting sustainable agricultural development. Using data from the 2020 China Rural Revitalization Survey, this study analyzes the impact of ASS on reducing pesticide inputs. The results show: (1) ASS play a significantly positive role in reducing pesticide inputs. (2) Heterogeneity analyses show that ASS' role in reducing pesticide inputs is stronger for farming households with small farms, which participate in cooperatives, and do not have members involved in non-farm employment than that for farming households with large farms, which do not participate in cooperatives, and have members involved in non-farm employment. (3) Mechanism analysis shows that ASS' green perception and demonstration-led effects contribute to reducing pesticide inputs by 148.6% and 36.8%, respectively, at the 1% level. Finally, this study proposes relevant policy recommendations for promoting ASS, promoting the continuous operation of farmland, and encouraging farmers to participate in ASS.


Assuntos
Agricultura , Praguicidas , Agricultura/métodos , Humanos , China , Serviço Social , Fazendeiros , Fazendas , População Rural , Inquéritos e Questionários
14.
Environ Sci Pollut Res Int ; 31(32): 44900-44907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954337

RESUMO

Seed coating with pesticides is used extensively for the protection of both seeds and plants against pests. In this study, the uptake and transport of seed-coating pesticides (insecticides), including cyantraniliprole (CYN) and thiamethoxam (THX), were investigated. The translocation of these pesticides from the soil to the plant and their accumulation in different plant parts were also calculated. After sowing the seeds with seed coating pesticides, soil and plant samples were taken across the study area. These samples were extracted and analyzed in liquid chromatography with tandem mass spectrometry (LC-MS/MS). CYN and THX were used in maize plants for the first time to observe soil degradation kinetics, and CYN showed a higher half-life than THX in soil. Both pesticides have been taken up by the corn maize plant and transferred and accumulated to the upper parts of the plant. Although the THX concentration was between 2.240 and 0.003 mg/kg in the root, between 3.360 and 0.085 mg/kg in the stem, it was between 0.277 and 3.980 mg/kg in the leaf, whereas CYN was detected at higher concentrations. The concentration of CYN was 1.472 mg/ kg and 0.079 mg/kg in the roots and stems of the maize plant, respectively. However, the bioconcentration factor (BCF) indicates the soil-to-plant accumulation of CYN from 28 to 34.6 and that of 12.5 to 4567.1 for THX on different sampling days. The translocation factor (TFstem) represents the ratio of pesticides absorbed from the stem and transported to the roots. For CYN, TFstem ranges from 3.6 to 20.5, while for THX, it varies between 1.5 and 26.8, indicating a higher translocation rate for THX. The ratio of leaf to root concentration are 3.6 to 20.5 for CYN and 1.8 to 87.7 for THX, demonstrating effective translocation for both pesticides. The TF values for both pesticides are above 1, signifying successful root-to-stem-to-leaf movement. Notably, THX exhibits a notably higher transport rate compared to CYN.


Assuntos
Sementes , Tiametoxam , Zea mays , Zea mays/metabolismo , Pirazóis/metabolismo , Poluentes do Solo/metabolismo , ortoaminobenzoatos/metabolismo , Praguicidas/metabolismo , Solo/química
15.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955968

RESUMO

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Assuntos
Benzimidazóis , Carbamatos , Ivermectina , Oligoquetos , Poluentes do Solo , Solo , Animais , Oligoquetos/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Carbamatos/toxicidade , Benzimidazóis/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Estresse Oxidativo , Praguicidas/toxicidade
16.
Environ Sci Pollut Res Int ; 31(32): 45192-45203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961018

RESUMO

Exposure to organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) has been reported to be associated with renal impairment and chronic kidney disease (CKD). Nevertheless, the research results thus far have exhibited inconsistency, and the effect of lifestyle on their association is not clear. In this study, we assessed the correlation between serum OCPs/PCBs and CKD and renal function indicators including estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) among 1721 Chinese adults. In order to further investigate the potential impact of lifestyle, we conducted joint associations of lifestyle and OCPs/PCBs on CKD. We found a negative correlation between p,p'-DDE and eGFR, while logistic regression results showed a positive correlation between PCB-153 and CKD (OR, 1.92; 95% CI, 1.21, 3.06). Quantile g-computation regression analyses showed that the association between co-exposure to OCPs/PCBs and CKD was not significant, but p,p'-DDE and PCB-153 were the main contributors to the negative and positive co-exposure effects of eGFR and CKD, respectively, which is consistent with the regression results. Participants with both relatively high PCB-153 exposure and an unhealthy lifestyle had the highest risk of CKD, in the joint association analysis. The observed associations were generally supported by the FAS-eGFR method. Our research findings suggest that exposure to OCPs/PCBs may be associated with decreased eGFR and increased prevalence of CKD in humans, and a healthy lifestyle can to some extent alleviate the adverse association between PCB-153 exposure and CKD.


Assuntos
Hidrocarbonetos Clorados , Estilo de Vida , Praguicidas , Bifenilos Policlorados , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Bifenilos Policlorados/sangue , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Exposição Ambiental , Taxa de Filtração Glomerular , China , Idoso , Poluentes Ambientais
17.
Environ Sci Pollut Res Int ; 31(32): 44649-44668, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963627

RESUMO

Free water surface constructed wetlands (FWSCWs) for the treatment of various wastewater types have evolved significantly over the last few decades. With an increasing need and interest in FWSCWs applications worldwide due to their cost-effectiveness and other benefits, this paper reviews recent literature on FWSCWs' ability to remove different types of pollutants such as nutrients (i.e., TN, TP, NH4-N), heavy metals (i.e., Fe, Zn, and Ni), antibiotics (i.e., oxytetracycline, ciprofloxacin, doxycycline, sulfamethazine, and ofloxacin), and pesticides (i.e., Atrazine, S-Metolachlor, imidacloprid, lambda-cyhalothrin, diuron 3,4-dichloroanilin, Simazine, and Atrazine) that may co-exist in wetland inflow, and discusses approaches for simulating hydraulic and pollutant removal processes. A bibliometric analysis of recent literature reveals that China has the highest number of publications, followed by the USA. The collected data show that FWSCWs can remove an average of 61.6%, 67.8%, 54.7%, and 72.85% of inflowing nutrients, heavy metals, antibiotics, and pesticides, respectively. Optimizing each pollutant removal process requires specific design parameters. Removing heavy metal requires the lowest hydraulic retention time (HRT) (average of 4.78 days), removing pesticides requires the lowest water depth (average of 0.34 m), and nutrient removal requires the largest system size. Vegetation, especially Typha spp. and Phragmites spp., play an important role in FWSCWs' system performance, making significant contributions to the removal process. Various modeling approaches (i.e., black-box and process-based) were comprehensively reviewed, revealing the need for including the internal process mechanisms related to the biological processes along with plants spp., that supported by a further research with field study validations. This work presents a state-of-the-art, systematic, and comparative discussion on the efficiency of FWSCWs in removing different pollutants, main design factors, the vegetation, and well-described models for performance prediction.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Metais Pesados , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Praguicidas
18.
J Phys Condens Matter ; 36(41)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38968934

RESUMO

Titanium dioxide (TiO2) based photocatalysts have been widely used as a photocatalyst for the degradation of various persistent organic compounds in water and air. The degradation mechanism involves the generation of highly reactive oxygen species, such as hydroxyl radicals, which react with organic compounds to break down their chemical bonds and ultimately mineralize them into harmless products. In the case of pharmaceutical and pesticide molecules, TiO2and modified TiO2photocatalysis effectively degrade a wide range of compounds, including antibiotics, pesticides, and herbicides. The main downside is the production of dangerous intermediate products, which are not frequently addressed in the literature that is currently available. The degradation rate of these compounds by TiO2photocatalysis depends on factors such as the chemical structure of the compounds, the concentration of the TiO2catalyst, the intensity, the light source, and the presence of other organic or inorganic species in the solution. The comprehension of the degradation mechanism is explored to gain insights into the intermediates. Additionally, the utilization of response surface methodology is addressed, offering a potential avenue for enhancing the scalability of the reactors. Overall, TiO2photocatalysis is a promising technology for the treatment of pharmaceutical and agrochemical wastewater, but further research is needed to optimize the process conditions and to understand the fate and toxicity of the degradation products.


Assuntos
Praguicidas , Processos Fotoquímicos , Titânio , Titânio/química , Catálise , Praguicidas/química , Preparações Farmacêuticas/química , Luz
19.
Anal Methods ; 16(28): 4827-4834, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38967314

RESUMO

A cloud point method was developed and applied for the first time to extract and preconcentrate thiabendazole (TBZ) from commercial whole grape juice samples, with determination by high performance liquid chromatography coupled to electrochemical detection (HPLC/EC), using a cathodically pretreated boron-doped diamond electrode (BDD). The best conditions for extraction and preconcentration of TBZ by cloud point extraction (CPE) were performed at pH 6.0, by adding 1 mL of the surfactant Tergitol TMN-6 at 10% (mass-to-mass ratio), without heating (at 27 °C) and ultrasonic stirring time of (20 kHz) for 60 min. The HPLC/EC determination was duly validated in a C8 column, in mobile phase with a 69 : 31 ratio (V/V) of phosphate buffer (pH 7.0):ACN, at a flow rate of 1.2 mL min-1 and electrochemical detection with BDD electrode by applying 1.40 V × Ag/AgCl (3.0 mol L-1). Under these conditions, the procedure showed a preconcentration factor (FC) of 21.7, and limits of detection (LOD) and quantification (LOQ) of 6.64 × 10-9 mol L-1 (or 1.33 µg L-1) and 1.66 × 10-8 mol L-1 (or 3.34 µg L-1), respectively. The method provided a percent recovery of 81% to 98%, with a coefficient of variation between 3% and 15%.


Assuntos
Técnicas Eletroquímicas , Sucos de Frutas e Vegetais , Tiabendazol , Vitis , Cromatografia Líquida de Alta Pressão/métodos , Tiabendazol/análise , Tiabendazol/isolamento & purificação , Sucos de Frutas e Vegetais/análise , Vitis/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , Praguicidas/análise , Contaminação de Alimentos/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-38959705

RESUMO

This study established a method to prepare and detect OPs adducts on butyrylcholinesterase (BChE) and human serum albumin (HSA). OPs (methyl paraoxon, ethyl paraoxon, methyl parathion, parathion) were incubated with BChE or HSA in vitro, and the adducts of OPs-BChE or OPs-HSA were prepared and qualitatively analyzed by ultra-performance liquid chromatography data-dependent high-resolution tandem mass spectrometry (UPLC-ddHRMS/MS). The amounts of BChE and HSA in the incubating systems were varied and the resulting amounts of the adducts were determined using linear regression. OPs-BChE in the blood were isolated by immunomagnetic separation (IMS), and then digested into the OPs-nonapeptide adduct by pepsin. The proteins in the remaining blood plasma were precipitated and digested by pronase to OPs-tyrosines(OPs-Tyr), which were quantified by UPLC-ddHRMS/MS. 4 OPs-nonapeptides and 4 OPs-Tyr adducts were obtained through the process above. The relative mass deviation of incubated adducts between the actual and theoretical exact masses was less than 10 ppm, and further confirmed by fragmentation mass spectra analysis. Calibration curves were linear for all adducts with a coefficient of determination value (R2) ≥0.995. The limits of detection (LOD) and limits of quantification (LOQ) for adducts detected by MS ranged from 0.05 to 1.0 ng/mL, and from 0.1 to 2.0 ng/mL, respectively. The recovery percentages for adducts ranged from 76.1 % to 107.1 %, matrix effects ranged from 83.4 % to 102.1 %. The inter-day and intra-day precision were 6.1-10.1 % and 6.9-12.9 % for adducts. This study provides a new reference method for the detection of organophosphorus pesticide poisoning. In addition, two blood samples with organophosphorus poisoning were tested by the designed method, and the corresponding adducts were detected in both samples.


Assuntos
Butirilcolinesterase , Compostos Organofosforados , Espectrometria de Massas em Tandem , Humanos , Butirilcolinesterase/sangue , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/sangue , Compostos Organofosforados/análise , Espectrometria de Massas em Tandem/métodos , Modelos Lineares , Cromatografia Líquida de Alta Pressão/métodos , Praguicidas/sangue , Praguicidas/análise , Praguicidas/química , Limite de Detecção , Albumina Sérica Humana/química , Albumina Sérica Humana/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA