Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.858
Filtrar
1.
Biol Pharm Bull ; 47(5): 967-977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763751

RESUMO

Ensitrelvir is a noncovalent inhibitor of the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2. Acquisition of drug resistance in virus-derived proteins is a serious therapeutic concern, and drug resistance occurs due to amino acid mutations. In this study, we computationally constructed 24 mutants, in which one residue around the active site was replaced with alanine and performed molecular dynamics simulations to the complex of Mpro and ensitrelvir to predict the residues involved in drug resistance. We evaluated the changes in the entire protein structure and ligand configuration in each of these mutants and estimated which residues were involved in ensitrelvir recognition. This method is called a virtual alanine scan. In nine mutants (S1A, T26A, H41A, M49A, L141A, H163A, E166A, V186A, and R188A), although the entire protein structure and catalytic dyad (cysteine (Cys)145 and histidine (His)41) were not significantly moved, the ensitrelvir configuration changed. Thus, it is considered that these mutants did not recognize ensitrelvir while maintaining Mpro enzymatic activities, and Ser1, Thr26, His41, Met49, Leu141, His163, Glu166, Val186, and Arg188 may be related to ensitrelvir resistance. The ligand shift noted in M49A was similar to that observed in M49I, which has been shown to be experimentally ensitrelvir resistant. These findings suggest that our research approach can predict mutations that incite drug resistance.


Assuntos
Alanina , Domínio Catalítico , Proteases 3C de Coronavírus , Farmacorresistência Viral , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , SARS-CoV-2/efeitos dos fármacos , Alanina/genética , Farmacorresistência Viral/genética , Humanos , Mutação , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , Indazóis , Triazinas , Triazóis
2.
Bioprocess Biosyst Eng ; 47(6): 931-942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709274

RESUMO

The conjugated silver nanoparticles using biomolecules have attracted great attention of researchers because physical dimensions and surface chemistry play important roles in toxicity and biocompatibility of AgNPs. Hence, in the current study, synthesis of bio-conjugated AgNPs with protein protease inhibitor (PI) isolated from Streptomyces spp. is reported. UV-visible spectra of PI and AgNPs showed stronger peaks at 280 and 405 nm, confirming the synthesis of conjugated AgNPs-PI. TEM and SEM images of AgNPs-PI showed spherical-shaped nanoparticles with a slight increase in particle size and thin amorphous layer around the surface of silver nanomaterial. Circular dichroism, FT-IR and fluorescence spectral studies confirmed AgNPs-PI conjugation. Conjugated AgNPs-PI showed excellent anticancer potential than AgNPs and protease inhibitor separately on human breast MCF-7 and prostate PC-3 cell lines. The findings revealed that surface modification of AgNPs with protein protease inhibitor stabilised the nanomaterial and increased its anticancer activity.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Prata , Humanos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Células PC-3 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral
3.
BMC Infect Dis ; 24(1): 495, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750422

RESUMO

BACKGROUND: In November 2019, the world faced a pandemic called SARS-CoV-2, which became a major threat to humans and continues to be. To overcome this, many plants were explored to find a cure. METHODS: Therefore, this research was planned to screen out the active constituents from Artemisia annua that can work against the viral main protease Mpro as this non-structural protein is responsible for the cleavage of replicating enzymes of the virus. Twenty-five biocompounds belonging to different classes namely alpha-pinene, beta-pinene, carvone, myrtenol, quinic acid, caffeic acid, quercetin, rutin, apigenin, chrysoplenetin, arteannunin b, artemisinin, scopoletin, scoparone, artemisinic acid, deoxyartemisnin, artemetin, casticin, sitogluside, beta-sitosterol, dihydroartemisinin, scopolin, artemether, artemotil, artesunate were selected. Virtual screening of these ligands was carried out against drug target Mpro by CB dock. RESULTS: Quercetin, rutin, casticin, chrysoplenetin, apigenin, artemetin, artesunate, sopolin and sito-gluside were found as hit compounds. Further, ADMET screening was conducted which represented Chrysoplenetin as a lead compound. Azithromycin was used as a standard drug. The interactions were studied by PyMol and visualized in LigPlot. Furthermore, the RMSD graph shows fluctuations at various points at the start of simulation in Top1 (Azithromycin) complex system due to structural changes in the helix-coil-helix and beta-turn-beta changes at specific points resulting in increased RMSD with a time frame of 50 ns. But this change remains stable after the extension of simulation time intervals till 100 ns. On other side, the Top2 complex system remains highly stable throughout the time scale. No such structural dynamics were observed bu the ligand attached to the active site residues binds strongly. CONCLUSION: This study facilitates researchers to develop and discover more effective and specific therapeutic agents against SARS-CoV-2 and other viral infections. Finally, chrysoplenetin was identified as a more potent drug candidate to act against the viral main protease, which in the future can be helpful.


Assuntos
Artemisia annua , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Artemisia annua/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação por Computador , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , COVID-19/virologia , Simulação de Dinâmica Molecular
4.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716194

RESUMO

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Assuntos
Aderência Bacteriana , Campylobacter jejuni , Lectinas , Inibidores de Proteases , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/fisiologia , Campylobacter jejuni/metabolismo , Humanos , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Lectinas/metabolismo , Lectinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Fungos/efeitos dos fármacos , Mucinas/metabolismo , Células Epiteliais/microbiologia , Fibronectinas/metabolismo
5.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734773

RESUMO

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Assuntos
Antifúngicos , Candida , Inibidores de Proteases , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Inibidores de Proteases/farmacologia , Testes de Sensibilidade Microbiana , Animais , Capsicum/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Eritrócitos/efeitos dos fármacos , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos
6.
Cryo Letters ; 45(3): 149-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709186

RESUMO

BACKGROUND: The industrial scale cryo-storage of raw tissue materials requires a robust, low-cost and easy-to-operate method that can facilitate the down-stream process. OBJECTIVE: The study was aimed to develop the multifunctional protective solutions (MPS) for transportation at ambient conditions and also subsequent cryo-storage below -20 degree C of raw porcine hides for tissue engineering and regenerative medicine. MATERIALS AND METHODS: Protective solutions with antimicrobial activity and proteinase-inhibiting activity were developed and tested for its efficacy in preserving the extracellular matrix of porcine dermis from microbial spoilage, proteolytic degradation, freeze damage and excessive dehydration during shipping and cryo-storage. The MPSs contained phosphate-buffered saline with ethylene diamine tetra acetic acid (EDTA) added as chelator and proteinase inhibitor, as well as glycerol or maltodextrin (M180) as cryoprotectants. RESULTS: MPSs prepared with EDTA and glycerol or M180 had significant antimicrobial activity and proteinase-inhibiting activity during the period of shipping and handling. Glycerol and M180 prevented eutectic salt precipitation and excessive freeze dehydration upon cryo-storage of porcine hides. Without glycerol or M180, hides could be freeze-dehydrated to the low hydration at ~0.4 g/g dw, and formed irreversible plications after freezing. A critical hydration (0.8~0.9 g/g dw) was observed for the extracellular matrix of porcine dermis, and dehydration to a lower level could impose enormous stress and potential damage. The soaking of porcine hides in MPSs decreased water content as glycerol and M180 entered into dermis. Upon equilibration, the glycerol content in the tissue was about 94% of the incubating glycerol solution, but the M180 content in the tissue was only about 50% of the incubating M180 solution, indicating that M180 did not get into the entire aqueous domain within dermis. MPSs reduced ice formation and increased the unfrozen water content of porcine raw hides upon cryo-storage. CONCLUSION: MPSs prepared with EDTA and glycerol or M180 have antimicrobial activity and proteinase-inhibiting activity, which can be used for transportation and cryo-storage of raw hides at the industrial scale. Glycerol at 7.5% w/v and M180 at 20% w/v were sufficient to prevent freeze damage and excessive freeze dehydration. Doi.org/10.54680/fr24310110312.


Assuntos
Criopreservação , Crioprotetores , Medicina Regenerativa , Engenharia Tecidual , Animais , Medicina Regenerativa/métodos , Suínos , Engenharia Tecidual/métodos , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/química , Ácido Edético/química , Ácido Edético/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos
7.
Sci Rep ; 14(1): 10419, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710746

RESUMO

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Indóis , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Células HEK293 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Simulação por Computador , COVID-19/virologia , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química
8.
Eur J Med Chem ; 273: 116498, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762916

RESUMO

The progressive emergence of SARS-CoV-2 variants has necessitated the urgent exploration of novel therapeutic strategies to combat the COVID-19 pandemic. The SARS-CoV-2 main protease (Mpro) represents an evolutionarily conserved therapeutic target for drug discovery. This study highlights the discovery of meisoindigo (Mei), derived from the traditional Chinese medicine (TCM) Indigo naturalis, as a novel non-covalent and nonpeptidic Mpro inhibitor. Substantial optimizations and structure-activity relationship (SAR) studies, guided by a structure-based drug design approach, led to the identification of several Mei derivatives, including S5-27 and S5-28, exhibiting low micromolar inhibition against SARS-CoV-2 Mpro with high binding affinity. Notably, S5-28 provided significant protection against wild-type SARS-CoV-2 in HeLa-hACE2 cells, with EC50 up to 2.66 µM. Furthermore, it displayed favorable physiochemical properties and remarkable gastrointestinal and metabolic stability, demonstrating its potential as an orally bioavailable drug for anti-COVID-19 therapy. This research presents a promising avenue for the development of new antiviral agents, offering hope in the ongoing battle against COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Relação Estrutura-Atividade , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Descoberta de Drogas , Administração Oral , Animais , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Células HeLa , COVID-19/virologia , Estrutura Molecular , Ratos , Testes de Sensibilidade Microbiana , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/uso terapêutico , Simulação de Acoplamento Molecular , Desenho de Fármacos
9.
J Agric Food Chem ; 72(20): 11561-11576, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739709

RESUMO

The aim of this study is to validate the activity of hazelnut (Corylus avellana L.)-derived immunoactive peptides inhibiting the main protease (Mpro) of SARS-CoV-2 and further unveil their interaction mechanism using in vitro assays, molecular dynamics (MD) simulations, and binding free energy calculations. In general, the enzymatic hydrolysis components, especially molecular weight < 3 kDa, possess good immune activity as measured by the proliferation ability of mouse splenic lymphocytes and phagocytic activity of mouse peritoneal macrophages. Over 866 unique peptide sequences were isolated, purified, and then identified by nanohigh-performance liquid chromatography/tandem mass spectrometry (NANO-HPLC-MS/MS) from hazelnut protein hydrolysates, but Trp-Trp-Asn-Leu-Asn (WWNLN) and Trp-Ala-Val-Leu-Lys (WAVLK) in particular are found to increase the cell viability and phagocytic capacity of RAW264.7 macrophages as well as promote the secretion of the cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). Fluorescence resonance energy transfer assay elucidated that WWNLN and WAVLK exhibit excellent inhibitory potency against Mpro, with IC50 values of 6.695 and 16.750 µM, respectively. Classical all-atom MD simulations show that hydrogen bonds play a pivotal role in stabilizing the complex conformation and protein-peptide interaction. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation indicates that WWNLN has a lower binding free energy with Mpro than WAVLK. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions illustrate favorable drug-likeness and pharmacokinetic properties of WWNLN compared to WAVLK. This study provides a new understanding of the immunomodulatory activity of hazelnut hydrolysates and sheds light on peptide inhibitors targeting Mpro.


Assuntos
Corylus , Peptídeos , Animais , Camundongos , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Corylus/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/imunologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Células RAW 264.7 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/química , Células Vero
10.
Chem Biol Interact ; 396: 111040, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735453

RESUMO

Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.


Assuntos
Vírus da Dengue , Simulação de Acoplamento Molecular , Peptídeos , Relação Quantitativa Estrutura-Atividade , Serina Endopeptidases , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Antivirais/química , Antivirais/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Proteases Virais
11.
PLoS One ; 19(4): e0292294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635555

RESUMO

INTRODUCTION: Sexual dysfunction in women with HIV is a necessary but understudied aspect of HIV complications in women living with HIV. This study reports the prevalence, pattern, and risk factors for sexual dysfunction in women living with HIV in southwest Nigeria. METHODS: A validated Female Sexual Function Index was used to determine sexual dysfunction in a cross-sectional study design involving 2926 adult women living with HIV in a large, publicly funded tertiary HIV treatment centre in Lagos, Nigeria. A score of less than 26.5 indicated sexual dysfunction. Multivariate logistic regression analysis was performed to identify risk factors for sexual dysfunction. P<0.05 was considered statistically significant at a 95% confidence interval (CI). RESULTS: The prevalence of sexual dysfunction was 71.4%. The types of dysfunctions detected included disorder of desire (76.8%), sexual arousal (66.0%), orgasm (50.0%), pain (47.2%), lubrication (47.2%), and satisfaction (38.8%). Multivariate analysis showed that menopause (aOR: 2.0; 1.4-4.1), PHQ score of 10 and above (aOR: 2.3; 1.7-3.2), co-morbid medical conditions (aOR: 1.8; 1.4-2.7), use of protease inhibitor-based antiretroviral therapy (aOR: 1.3; 1.2-2.1) and non-disclosure of HIV status (aOR: 0.7; 0.6-0.8) were factors associated with sexual dysfunction. CONCLUSIONS: Sexual dysfunction is common among Nigerian women living with HIV. Menopause, use of protease inhibitor-based regimens, PHQ score of at least 10, co-morbid medical condition, and non-disclosure of HIV status were associated with sexual dysfunction. National HIV programmes, in addition to incorporating screening and management of sexual dysfunction in the guidelines, should sensitise and train health workers on the detection and treatment of sexual dysfunction.


Assuntos
Infecções por HIV , Disfunções Sexuais Fisiológicas , Disfunções Sexuais Psicogênicas , Adulto , Humanos , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Disfunções Sexuais Psicogênicas/epidemiologia , Disfunções Sexuais Psicogênicas/etiologia , Estudos Transversais , Inquéritos e Questionários , Nigéria/epidemiologia , Disfunções Sexuais Fisiológicas/etiologia , Disfunções Sexuais Fisiológicas/complicações , Inibidores de Proteases
12.
Sci Rep ; 14(1): 8991, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637583

RESUMO

COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Peptidomiméticos , Humanos , SARS-CoV-2/metabolismo , Peptidomiméticos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Aminoácidos , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/química
13.
Drug Des Devel Ther ; 18: 1133-1141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618281

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the world's principal metabolic diseases characterized by chronic hyperglycemia. The gut incretin hormones, glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), which has been proposed as a new treatment for T2DM, are extensively metabolized by Dipeptidyl peptidase 4 (DPP-4). Inhibitors of DPP-4 block the degradation of GLP-1 and GIP and may increase their natural circulating levels, favoring glycemic control in T2DM. A novel and potent selective inhibitor of DPP-4 with an 8-purine derived structure (1) has been developed and tested in vitro and in vivo in Zücker obese diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome and T2DM to assess the inhibitory activity using vildagliptin as reference standard. ZDF rats were subdivided into three groups (n = 7/group), control (C-ZDF), and those treated with compound 1 (Compound1-ZDF) and with vildagliptin (V-ZDF), both at 10 mg/kg/d rat body weight, in their drinking water for 12 weeks, and a group of lean littermates (ZL) was used. ZDF rats developed DM (fasting hyperglycemia, 425 ± 14.8 mg/dL; chronic hyperglycemia, HbA1c 8.5 ± 0.4%), compared to ZL rats. Compound 1 and vildagliptin reduced sustained HbAl1c (14% and 10.6%, P < 0.05, respectively) and fasting hyperglycemia values (24% and 19%, P < 0.05, respectively) compared to C-ZDF group (P < 0.001). Compound 1 and vildagliptin have shown a potent activity with an IC50 value of 4.92 and 3.21 µM, respectively. These data demonstrate that oral compound 1 administration improves diabetes in ZDF rats by the inhibitory effect on DPP-4, and the potential to be a novel, efficient and tolerable approach for treating diabetes of obesity-related T2DM, in ZDF rats.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hiperglicemia , Animais , Ratos , Antivirais , Broncodilatadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Inibidores de Proteases , Ratos Zucker , Vasodilatadores , Vildagliptina/farmacologia , Vildagliptina/uso terapêutico
14.
PLoS One ; 19(4): e0298201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626042

RESUMO

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Assuntos
Alcaloides , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-38608142

RESUMO

Protease is the enzyme accountable for the breakdown of proteins i.e., proteolysis. Proteases are reportedly involved in the events of growth, development, progression and metastasis of cancers. If any agent could inhibit/retard the protease enzyme, i.e., protease inhibitor, it would arrest the cancer; thus indicating the significance of exploring protease inhibitors for latest anti-malignant drug discovery. Higher plants are the rich sources of different protease inhibitors that are effective against several types of malignancies both at preclinical and clinical stages. Natural protease inhibitors of herbal origin have both cancer chemopreventive and chemotherapeutic properties together with inhibitory activity against different types of pertinent proteases. Clinically, these herbal agents are found to be safe unlike the synthetic antineoplastic agents. Further studies in this direction are necessary in pursuit of newer generation drugs without adverse reactions for the prevention and treatment of malignancies.


Assuntos
Neoplasias , Inibidores de Proteases , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Peptídeo Hidrolases , Antivirais
16.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611800

RESUMO

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Assuntos
Álcoois , Chlamydia trachomatis , Inibidores de Proteases , Inibidores de Proteases/farmacologia , Terapia Enzimática , Isocumarinas , Serina Endopeptidases , Serina Proteases
17.
J Med Chem ; 67(9): 7048-7067, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38630165

RESUMO

Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.


Assuntos
Antivirais , Catepsina L , SARS-CoV-2 , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/síntese química , Cristalografia por Raios X , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Modelos Moleculares
18.
Antiviral Res ; 226: 105878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582134

RESUMO

Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.


Assuntos
Antivirais , Flavivirus , Serina Endopeptidases , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Flavivirus/efeitos dos fármacos , Flavivirus/enzimologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Antivirais/farmacologia , Antivirais/química , Humanos , RNA Helicases/metabolismo , RNA Helicases/química , RNA Helicases/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
19.
Arch Biochem Biophys ; 756: 110019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688397

RESUMO

Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid ß protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neprilisina , Neprilisina/antagonistas & inibidores , Neprilisina/química , Neprilisina/metabolismo , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Farmacóforo
20.
Phys Chem Chem Phys ; 26(18): 14006-14017, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683190

RESUMO

SARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes. Nowadays, novel strategies to develop new potential inhibitors for SARS-CoV-2 and other Omicron variants have gained prominence. For viral replication and survival the main protease of SARS-CoV-2 plays a vital role. Peptide-like inhibitors that mimic the substrate peptide have already proved to be effective in inhibiting the Mpro of SARS-CoV-2 variants. Our systematic canonical amino acid point mutation analysis on the native peptide has revealed various ways to improve the native peptide of the main protease. Multi mutation analysis has led us to identify and design potent peptide-analog inhibitors that act against the Mpro of the Omicron sub-variants. Our in-depth analysis of all-atom molecular dynamics studies has paved the way to characterize the atomistic behavior of Mpro in Omicron variants. Our goal is to develop potent peptide-analogs that could be therapeutically effective against Omicron and its sub-variants.


Assuntos
Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , Peptídeos , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Humanos , Antivirais/química , Antivirais/farmacologia , Desenho de Fármacos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , COVID-19/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...