Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.406
Filtrar
1.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967642

RESUMO

Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.


Assuntos
Biologia Computacional , Mapeamento de Interação de Proteínas , Software , Biologia Computacional/métodos , Simulação por Computador , Plasmídeos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Ligação Proteica
2.
Methods Mol Biol ; 2836: 253-281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995545

RESUMO

Interactomics is bringing a deluge of data regarding protein-protein interactions (PPIs) which are involved in various molecular processes in all types of cells. However, this information does not easily translate into direct and precise molecular interfaces. This limits our understanding of each interaction network and prevents their efficient modulation. A lot of the detected interactions involve recognition of short linear motifs (SLiMs) by a folded domain while others rely on domain-domain interactions. Functional SLiMs hide among a lot of spurious ones, making deeper analysis of interactomes tedious. Hence, actual contacts and direct interactions are difficult to identify.Consequently, there is a need for user-friendly bioinformatic tools, enabling rapid molecular and structural analysis of SLiM-based PPIs in a protein network. In this chapter, we describe the use of the new webserver SLiMAn to help digging into SLiM-based PPIs in an interactive fashion.


Assuntos
Biologia Computacional , Internet , Mapeamento de Interação de Proteínas , Software , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Mapas de Interação de Proteínas , Motivos de Aminoácidos , Humanos , Bases de Dados de Proteínas , Ligação Proteica
3.
Front Cell Infect Microbiol ; 14: 1371837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994005

RESUMO

Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores Virais , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Células A549 , Receptores Virais/metabolismo , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Coloração e Rotulagem/métodos , Células HEK293 , Biotinilação , Mapeamento de Interação de Proteínas , Biotina/metabolismo
4.
Methods Mol Biol ; 2780: 45-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987463

RESUMO

Proteins are the fundamental organic macromolecules in living systems that play a key role in a variety of biological functions including immunological detection, intracellular trafficking, and signal transduction. The docking of proteins has greatly advanced during recent decades and has become a crucial complement to experimental methods. Protein-protein docking is a helpful method for simulating protein complexes whose structures have not yet been solved experimentally. This chapter focuses on major search tactics along with various docking programs used in protein-protein docking algorithms, which include: direct search, exhaustive global search, local shape feature matching, randomized search, and broad category of post-docking approaches. As backbone flexibility predictions and interactions in high-resolution protein-protein docking remain important issues in the overall optimization context, we have put forward several methods and solutions used to handle backbone flexibility. In addition, various docking methods that are utilized for flexible backbone docking, including ATTRACT, FlexDock, FLIPDock, HADDOCK, RosettaDock, FiberDock, etc., along with their scoring functions, algorithms, advantages, and limitations are discussed. Moreover, what progress in search technology is expected, including not only the creation of new search algorithms but also the enhancement of existing ones, has been debated. As conformational flexibility is one of the most crucial factors affecting docking success, more work should be put into evaluating the conformational flexibility upon binding for a particular case in addition to developing new algorithms to replace the rigid body docking and scoring approach.


Assuntos
Algoritmos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Software , Conformação Proteica , Biologia Computacional/métodos , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos
5.
Methods Mol Biol ; 2780: 15-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987461

RESUMO

Protein-protein docking is considered one of the most important techniques supporting experimental proteomics. Recent developments in the field of computer science helped to improve this computational technique so that it better handles the complexity of protein nature. Sampling algorithms are responsible for the generation of numerous protein-protein ensembles. Unfortunately, a primary docking output comprises a set of both near-native poses and decoys. Application of the efficient scoring function helps to differentiate poses with the most favorable properties from those that are very unlikely to represent a natural state of the complex. This chapter explains the importance of sampling and scoring in the process of protein-protein docking. Moreover, it summarizes advances in the field.


Assuntos
Algoritmos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Software , Proteômica/métodos
6.
Methods Mol Biol ; 2780: 69-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987464

RESUMO

Molecular docking is used to anticipate the optimal orientation of a particular molecule to a target to form a stable complex. It makes predictions about the 3D structure of any complex based on the binding characteristics of the ligand and the target receptor usually a protein. It is an exceptionally useful tool, which is used as a model to study how ligands attach to proteins. Docking can also be used for studying the interaction of ligands and proteins to analyze inhibitory efficacy. The ligand may also be a protein, making it possible to study interactions between two different proteins using the numerous docking tools available for basic research on protein interactions. The protein-protein docking is a crucial approach to understanding the protein interactions and predicting the structure of protein complexes that have not yet been experimentally determined. Moreover, the protein-protein interactions can predict the function of target proteins and the drug-like properties of molecules. Therefore, protein docking assists in uncovering insights into protein interactions and also aids in a better understanding of molecular pathways/mechanisms. This chapter comprehends the various tools for protein-protein docking (pairwise and multiple), including their methodologies and analysis of output as results.


Assuntos
Simulação de Acoplamento Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas , Proteínas/química , Proteínas/metabolismo , Ligantes , Mapeamento de Interação de Proteínas/métodos , Software , Biologia Computacional/métodos , Conformação Proteica , Sítios de Ligação , Bases de Dados de Proteínas
7.
Methods Mol Biol ; 2780: 3-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987460

RESUMO

Despite the development of methods for the experimental determination of protein structures, the dissonance between the number of known sequences and their solved structures is still enormous. This is particularly evident in protein-protein complexes. To fill this gap, diverse technologies have been developed to study protein-protein interactions (PPIs) in a cellular context including a range of biological and computational methods. The latter derive from techniques originally published and applied almost half a century ago and are based on interdisciplinary knowledge from the nexus of the fields of biology, chemistry, and physics about protein sequences, structures, and their folding. Protein-protein docking, the main protagonist of this chapter, is routinely treated as an integral part of protein research. Herein, we describe the basic foundations of the whole process in general terms, but step by step from protein representations through docking methods and evaluation of complexes to their final validation.


Assuntos
Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Software , Mapeamento de Interação de Proteínas/métodos , Conformação Proteica , Biologia Computacional/métodos
8.
Methods Mol Biol ; 2780: 129-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987467

RESUMO

Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.


Assuntos
Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Mapeamento de Interação de Proteínas , Proteínas , Software , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Ligação Proteica , Humanos
9.
Methods Mol Biol ; 2780: 107-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987466

RESUMO

An exponential increase in the number of publications that address artificial intelligence (AI) usage in life sciences has been noticed in recent years, while new modeling techniques are constantly being reported. The potential of these methods is vast-from understanding fundamental cellular processes to discovering new drugs and breakthrough therapies. Computational studies of protein-protein interactions, crucial for understanding the operation of biological systems, are no exception in this field. However, despite the rapid development of technology and the progress in developing new approaches, many aspects remain challenging to solve, such as predicting conformational changes in proteins, or more "trivial" issues as high-quality data in huge quantities.Therefore, this chapter focuses on a short introduction to various AI approaches to study protein-protein interactions, followed by a description of the most up-to-date algorithms and programs used for this purpose. Yet, given the considerable pace of development in this hot area of computational science, at the time you read this chapter, the development of the algorithms described, or the emergence of new (and better) ones should come as no surprise.


Assuntos
Algoritmos , Biologia Computacional , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Proteínas , Proteínas/química , Proteínas/metabolismo , Simulação de Acoplamento Molecular/métodos , Biologia Computacional/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Humanos , Conformação Proteica , Software
10.
Methods Mol Biol ; 2780: 139-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987468

RESUMO

Protein-protein binding affinity prediction is important for understanding complex biochemical pathways and to uncover protein interaction networks. Quantitative estimation of the binding affinity changes caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses. The binding free energies of protein-protein complexes can be predicted using several computational tools. This chapter is a summary of software developed for the prediction of binding free energies for protein-protein complexes and their mutants.


Assuntos
Biologia Computacional , Mutação , Ligação Proteica , Proteínas , Software , Termodinâmica , Proteínas/metabolismo , Proteínas/química , Proteínas/genética , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Humanos
11.
Methods Mol Biol ; 2780: 91-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987465

RESUMO

Concerted interactions between all the cell components form the basis of biological processes. Protein-protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain "hot spots," which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein-protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein-protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Conformação Proteica , Humanos , Software , Biologia Computacional/métodos
12.
Methods Mol Biol ; 2780: 327-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987476

RESUMO

The chapter emphasizes the importance of understanding protein-protein interactions in cellular mechanisms and highlights the role of computational modeling in predicting these interactions. It discusses sequence-based approaches such as evolutionary trace (ET), correlated mutation analysis (CMA), and subtractive correlated mutation (SCM) for identifying crucial amino acid residues, considering interface conservation or evolutionary changes. The chapter also explores methods like differential ET, hidden-site class model, and spatial cluster detection (SCD) for interface specificity and spatial clustering. Furthermore, it examines approaches combining structural and sequential methodologies and evaluates modeled predictions through initiatives like critical assessment of prediction of interactions (CAPRI). Additionally, the chapter provides an overview of various software programs used for molecular docking, detailing their search, sampling, refinement and scoring stages, along with innovative techniques and tools like normal mode analysis (NMA) and adaptive Poisson-Boltzmann solver (APBS) for electrostatic calculations. These computational and experimental approaches are crucial for unraveling protein-protein interactions and aid in developing potential therapeutics for various diseases.


Assuntos
Biologia Computacional , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Software , Biologia Computacional/métodos , Proteínas/metabolismo , Proteínas/química , Mapeamento de Interação de Proteínas/métodos , Humanos , Mutação , Algoritmos , Conformação Proteica
13.
Methods Mol Biol ; 2780: 149-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987469

RESUMO

Protein-protein interactions are involved in almost all processes in a living cell and determine the biological functions of proteins. To obtain mechanistic understandings of protein-protein interactions, the tertiary structures of protein complexes have been determined by biophysical experimental methods, such as X-ray crystallography and cryogenic electron microscopy. However, as experimental methods are costly in resources, many computational methods have been developed that model protein complex structures. One of the difficulties in computational protein complex modeling (protein docking) is to select the most accurate models among many models that are usually generated by a docking method. This article reviews advances in protein docking model assessment methods, focusing on recent developments that apply deep learning to several network architectures.


Assuntos
Aprendizado Profundo , Simulação de Acoplamento Molecular , Proteínas , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Software , Conformação Proteica , Cristalografia por Raios X/métodos
14.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 1981-1996, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044570

RESUMO

Proteins serve as the primary executors of cellular activities in organisms, and thus investigating the subcellular localization and interactions of proteins is crucial for understanding protein functions and elucidating the molecular mechanisms in organisms. Proximity labeling is a recently developed effective method for detecting protein-protein interactions in live cells. Compared with the conventional methods for studying protein-protein interactions, proximity labeling demonstrates high sensitivity, strong specificity, and low background and is widely employed in the research of protein-protein interactions between pathogens and hosts. This article reviews the recent progress in the development and applications of the biotin ligase BirA and its mutants and elucidates the functioning principles of several classical biotin ligases. This review aims to clarify the role of proximity labeling based on BirA and its mutants in identifying protein-protein interactions between pathogens and hosts.


Assuntos
Carbono-Nitrogênio Ligases , Interações Hospedeiro-Patógeno , Mutação , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biotina/metabolismo , Humanos , Mapeamento de Interação de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo
15.
Gen Physiol Biophys ; 43(4): 367-370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953578

RESUMO

Alzheimer's disease is currently not curable. Almost all attempts to identify disease-modifying drugs failed and the causes of disease etiology are not well understood. Neurofibrillary tangles composed of pathological tau protein belong to the main hallmarks of this disease. Identification of novel physiological and pathological tau interacting proteins may lead to a better understanding of Alzheimer's disease pathology and tau physiology and therefore we performed a screening of the brain library by a yeast two-hybrid system intending to identify new tau interaction partners. We identified CHORDC1 (cysteine and histidine-rich domain-containing protein 1) as a novel tau interaction partner by this approach. The CHORDC1-tau interaction was validated by co-immunoprecipitation from rat brain tissues and by in vitro co-localization in the cellular model expressing full-length human tau protein. We believe that our results can be useful for researchers studying tau protein in health and disease.


Assuntos
Proteínas tau , Proteínas tau/metabolismo , Ratos , Animais , Humanos , Ligação Proteica , Encéfalo/metabolismo , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
16.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963311

RESUMO

MOTIVATION: Protein-protein interaction (PPI) networks are crucial for automatically annotating protein functions. As multiple PPI networks exist for the same set of proteins that capture properties from different aspects, it is a challenging task to effectively utilize these heterogeneous networks. Recently, several deep learning models have combined PPI networks from all evidence, or concatenated all graph embeddings for protein function prediction. However, the lack of a judicious selection procedure prevents the effective harness of information from different PPI networks, as these networks vary in densities, structures, and noise levels. Consequently, combining protein features indiscriminately could increase the noise level, leading to decreased model performance. RESULTS: We develop DualNetGO, a dual-network model comprised of a Classifier and a Selector, to predict protein functions by effectively selecting features from different sources including graph embeddings of PPI networks, protein domain, and subcellular location information. Evaluation of DualNetGO on human and mouse datasets in comparison with other network-based models shows at least 4.5%, 6.2%, and 14.2% improvement on Fmax in BP, MF, and CC gene ontology categories, respectively, for human, and 3.3%, 10.6%, and 7.7% improvement on Fmax for mouse. We demonstrate the generalization capability of our model by training and testing on the CAFA3 data, and show its versatility by incorporating Esm2 embeddings. We further show that our model is insensitive to the choice of graph embedding method and is time- and memory-saving. These results demonstrate that combining a subset of features including PPI networks and protein attributes selected by our model is more effective in utilizing PPI network information than only using one kind of or concatenating graph embeddings from all kinds of PPI networks. AVAILABILITY AND IMPLEMENTATION: The source code of DualNetGO and some of the experiment data are available at: https://github.com/georgedashen/DualNetGO.


Assuntos
Proteínas , Proteínas/metabolismo , Proteínas/química , Camundongos , Humanos , Animais , Mapas de Interação de Proteínas , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Bases de Dados de Proteínas , Aprendizado Profundo
17.
Methods Mol Biol ; 2814: 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954202

RESUMO

Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.


Assuntos
Ascorbato Peroxidases , Dictyostelium , Proteômica , Dictyostelium/metabolismo , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Proteômica/métodos , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas/métodos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Transdução de Sinais , Coloração e Rotulagem/métodos , Endonucleases , Enzimas Multifuncionais
18.
Methods Mol Biol ; 2839: 53-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008248

RESUMO

Iron forms essential cofactors used by many nuclear enzymes involved in genome maintenance. However, unchaperoned nuclear iron may represent a threat to the surrounding genetic material as it promotes redox toxicity that may affect DNA integrity. Safely handling intracellular iron implies metal transfer and cofactor assembly processes based on protein-protein interactions. Identifying those interactions commonly occurs via high-throughput approaches using affinity purification or proximity labeling coupled with mass spectrometry analysis. However, these methods do not identify the subcellular location of the interactions. The one-on-one confirmation of proposed nuclear interactions is also challenging. Many approaches used to look at protein interactions are not tailored for looking at the nucleus because the methods used to solubilize nuclear content are harsh enough to disrupt those transient interactions. Here, we describe step-by-step the use of Proximity Ligation Assay (PLA) to analyze iron-mediated protein-protein interactions in the nucleus of cultured human cells. PLA allows the subcellular visualization of the interactions via the in situ detection of the two interacting proteins using fluorescence confocal microscopy. Briefly, cells are fixed, blocked, permeabilized, and incubated with primary antibodies directed to target proteins. Primary antibodies are recognized using PLA probes consisting of one PLUS and one MINUS oligonucleotide-labeled secondary antibody. If the two proteins are close enough (<40 nm), the PLA probes are ligated and used as the template for rolling circle amplification (RCA) with fluorescently labeled oligonucleotides that yield a signal detectable using fluorescence confocal microscopy. A fluorescently labeled membrane-specific stain (WGA) and the DNA-specific probe DAPI are used to identify cellular and nuclear boundaries, respectively. Confocal images are then analyzed using the CellProfiler software to confirm the abundance and localization of the studied protein-protein interactions.


Assuntos
Núcleo Celular , Ferro , Mapeamento de Interação de Proteínas , Humanos , Núcleo Celular/metabolismo , Ferro/metabolismo , Mapeamento de Interação de Proteínas/métodos , Ligação Proteica , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
19.
Cell Rep Methods ; 4(7): 100818, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986614

RESUMO

Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.


Assuntos
Peptídeos , Proteômica , SARS-CoV-2 , Proteômica/métodos , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Peptídeos/metabolismo , Peptídeos/química , COVID-19/metabolismo , COVID-19/virologia , Células HEK293 , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Plasmídeos/genética , Plasmídeos/metabolismo , Espectrometria de Massas/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Mapeamento de Interação de Proteínas/métodos
20.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892007

RESUMO

Understanding protein-protein interactions (PPIs) helps to identify protein functions and develop other important applications such as drug preparation and protein-disease relationship identification. Deep-learning-based approaches are being intensely researched for PPI determination to reduce the cost and time of previous testing methods. In this work, we integrate deep learning with feature fusion, harnessing the strengths of both approaches, handcrafted features, and protein sequence embedding. The accuracies of the proposed model using five-fold cross-validation on Yeast core and Human datasets are 96.34% and 99.30%, respectively. In the task of predicting interactions in important PPI networks, our model correctly predicted all interactions in one-core, Wnt-related, and cancer-specific networks. The experimental results on cross-species datasets, including Caenorhabditis elegans, Helicobacter pylori, Homo sapiens, Mus musculus, and Escherichia coli, also show that our feature fusion method helps increase the generalization capability of the PPI prediction model.


Assuntos
Aprendizado Profundo , Mapeamento de Interação de Proteínas , Humanos , Animais , Mapeamento de Interação de Proteínas/métodos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Camundongos , Biologia Computacional/métodos , Mapas de Interação de Proteínas , Bases de Dados de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA