RESUMO
Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal. The enzyme also contains an RNA component that carries the template copied by the TERT during telomere elongation. Here, we show that the tertiary structure of Leishmania major TERT (LmTERT) is conserved compared to other eukaryotes. However, the LmTERT N-terminal (LmTERT-NT) portion shows structural changes not detected in the entire protein, mainly in the TEN domain. Besides the disordered elements, the TEN gains two long ß-sheets but preserves the GQ motif and the residues in ß-sheet 5 that interact with the TRAP motif. In both structures, a linker flanks the TEN and TRBD. The TRBD is partially conserved in both structures and contains the canonical QFP and T motifs, invariant residues, and the putative CP and two trypanosomatid-specific motifs (TSM) besides genus-specific amino acid substitutions. Despite the structural changes, the recombinant LmTERT-NT preserves a hydrophobic cavity that binds specifically and in the picomolar range to the telomeric G-rich DNA and the TER 5' end region. Thus, LmTERT-NT shares the canonical structural domains and motifs and is biochemically active. We discuss the importance of the TERT N-terminal region in the parasite's telomerase catalysis.
Assuntos
Leishmania major , Telomerase , Telomerase/química , Telomerase/metabolismo , Telomerase/genética , Leishmania major/enzimologia , Leishmania major/genética , Sequência de Aminoácidos , Modelos Moleculares , Domínios Proteicos , Leishmania/enzimologia , Leishmania/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , RNA/metabolismo , RNA/química , Ligação ProteicaRESUMO
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
Assuntos
Vesículas Extracelulares , Interações Hospedeiro-Patógeno , Vesículas Extracelulares/metabolismo , Humanos , Interações Hospedeiro-Patógeno/genética , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/metabolismo , RNA/genética , Infecções/metabolismo , Comunicação Celular , Fungos/genética , Fungos/metabolismoRESUMO
We revisit a coarse-grained model to study the dynamics of ribonucleic acid (RNA). In our model, each nucleotide is replaced by an interaction center located at the center of mass. The interaction between nucleotides is carried out by a series of effective pair potentials obtained from the statistical analysis of 501 RNA molecules of high molecular weight from the Protein Data Bank. In addition to the Watson-Crick interactions, we also include non-canonical interactions, which provide stability to the three-dimensional (3D) structure of the molecule. The resulting knowledge-based interactions for the nucleotides (KIN) model allow us to perform efficient Brownian dynamics simulations under different conditions. First, we simulate the stretch of a set of hairpins at a loading rate similar to the values employed in unfolding experiments near equilibrium using optical tweezers. Additionally, we explore unfolding a set of pseudoknots under conditions farther from equilibrium, namely, at loading rates higher than the experimental equilibrium values. The results of our simulations are compared with those obtained from experimental measurements and theoretical models intended to estimate transition states and activation energies. Our KIN model is able to reproduce the intermediate states observed during mechanical unfolding experiments. Moreover, the results of the KIN model are in good agreement with the measured data.
Assuntos
Conformação de Ácido Nucleico , RNA , RNA/química , Simulação de Dinâmica MolecularRESUMO
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Assuntos
Archaea , Evolução Molecular , RNA , Archaea/genética , Bactérias/genética , Código Genético , Conformação de Ácido Nucleico , RNA/genética , RNA Bacteriano/genéticaRESUMO
This study focuses on the biological impacts of deleting the telomerase RNA from Leishmania major (LeishTER), a parasite responsible for causing leishmaniases, for which no effective treatment or prevention is available. TER is a critical player in the telomerase ribonucleoprotein complex, containing the template sequence copied by the reverse transcriptase component during telomere elongation. The success of knocking out both LeishTER alleles was confirmed, and no off-targets were detected. LmTER-/- cells share similar characteristics with other TER-depleted eukaryotes, such as altered growth patterns and partial G0/G1 cell cycle arrest in early passages, telomere shortening, and elevated TERRA expression. They also exhibit increased γH2A phosphorylation, suggesting that the loss of LeishTER induces DNA damage signaling. Moreover, pro-survival autophagic signals and mitochondrion alterations were shown without any detectable plasma membrane modifications. LmTER-/- retained the ability to transform into metacyclics, but their infectivity capacity was compromised. Furthermore, the overexpression of LeishTER was also deleterious, inducing a dominant negative effect that led to telomere shortening and growth impairments. These findings highlight TER's vital role in parasite homeostasis, opening discussions about its potential as a drug target candidate against Leishmania.
Assuntos
Proliferação de Células , Leishmania major , RNA , Telomerase , Leishmania major/genética , Leishmania major/patogenicidade , Telomerase/genética , Telomerase/metabolismo , RNA/genética , RNA/metabolismo , Animais , Técnicas de Inativação de Genes , Telômero/metabolismo , Telômero/genéticaRESUMO
In samples of harmful algal blooms (HABs), seawater can contain a high abundance of microorganisms and elemental ions. Along with the hardness of the walls of key HAB dinoflagellates such as Prorocentrum triestinum, this makes RNA extraction very difficult. These components interfere with RNA isolation, causing its degradation, in addition to the complex seawater properties of HABs that could hinder RNA isolation for effective RNA sequencing and transcriptome profiling. In this study, an RNA isolation technique was established through the modification of the Trizol method by applying the Micropestle System on cell pellets of P. triestinum frozen at -20 °C, obtained from 400 mL of culture with a total of 107 cells/mL. The results of the modified Trizol protocol generated quality RNA samples for transcriptomics sequencing, as determined by their measurement in Analyzer Agilent 4150.
Assuntos
Dinoflagellida , Dinoflagellida/genética , RNA/isolamento & purificação , RNA/genética , Guanidinas/química , Análise de Sequência de RNA/métodos , Proliferação Nociva de Algas , Perfilação da Expressão Gênica/métodos , Transcriptoma , Nucleotídeos/genética , Nucleotídeos/isolamento & purificação , Água do Mar , FenóisRESUMO
One of the central issues in the understanding of early cellular evolution is the characterisation of the cenancestor. This includes the description of the chemical nature of its genome. The disagreements on this question comprise several proposals, including the possibility that AlkB-mediated methylation repair of alkylated RNA molecules may be interpreted as evidence of a cenancestral RNA genome. We present here an evolutionary analysis of the cupin-like protein superfamily based on tertiary structure-based phylogenies that includes the oxygen-dependent AlkB and its homologs. Our results suggest that the repair of methylated RNA molecules is the outcome of the enzyme substrate ambiguity, and doesn´t necessarily indicates that the last common ancestor was endowed with an RNA genome.
Assuntos
DNA , Evolução Molecular , Genoma , Filogenia , RNA , RNA/genética , Genoma/genética , DNA/genética , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , MetilaçãoRESUMO
MOTIVATION: Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning. Traditional RNA secondary structure prediction algorithms have been mostly based on thermodynamic models and dynamic programming for free energy minimization. More recently deep learning methods have shown competitive performance compared with the classical ones, but there is still a wide margin for improvement. RESULTS: In this work we present sincFold, an end-to-end deep learning approach, that predicts the nucleotides contact matrix using only the RNA sequence as input. The model is based on 1D and 2D residual neural networks that can learn short- and long-range interaction patterns. We show that structures can be accurately predicted with minimal physical assumptions. Extensive experiments were conducted on several benchmark datasets, considering sequence homology and cross-family validation. sincFold was compared with classical methods and recent deep learning models, showing that it can outperform the state-of-the-art methods.
Assuntos
Biologia Computacional , Aprendizado Profundo , Conformação de Ácido Nucleico , RNA , RNA/química , RNA/genética , Biologia Computacional/métodos , Algoritmos , Redes Neurais de Computação , TermodinâmicaRESUMO
Plant viruses such as brome mosaic virus and cowpea chlorotic mottle virus are effectively purified through PEG precipitation and sucrose cushion ultracentrifugation. Increasing ionic strength and an alkaline pH cause the viruses to swell and disassemble into coat protein subunits. The coat proteins can be reassembled into stable virus-like particles (VLPs) that carry anionic molecules at low ionic strength and through two-step dialysis from neutral pH to acidic buffer. VLPs have been extensively studied due to their ability to protect and deliver cargo, particularly RNA, while avoiding degradation under physiological conditions. Furthermore, chemical functionalization of the surface of VLPs allows for the targeted drug delivery. VLPs derived from plants have demonstrated great potential in nanomedicine by offering a versatile platform for drug delivery, imaging, and therapeutic applications.
Assuntos
Vírus de Plantas , Vírus de Plantas/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírion/química , Vírion/genética , Bromovirus/química , Bromovirus/genética , RNA/química , Concentração de Íons de Hidrogênio , RNA Viral/genéticaRESUMO
The nearest-neighbor (NN) model is a general tool for the evaluation for oligonucleotide thermodynamic stability. It is primarily used for the prediction of melting temperatures but has also found use in RNA secondary structure prediction and theoretical models of hybridization kinetics. One of the key problems is to obtain the NN parameters from melting temperatures, and VarGibbs was designed to obtain those parameters directly from melting temperatures. Here we will describe the basic workflow from RNA melting temperatures to NN parameters with the use of VarGibbs. We start by a brief revision of the basic concepts of RNA hybridization and of the NN model and then show how to prepare the data files, run the parameter optimization, and interpret the results.
Assuntos
Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Termodinâmica , Temperatura de Transição , RNA/química , RNA/genética , Software , Algoritmos , Hibridização de Ácido Nucleico/métodosRESUMO
BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS: The activation model of ESCs was constructed by TGF-ß1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.
Assuntos
Glutamina , Mitocôndrias , Feminino , Camundongos , Humanos , Animais , Glutamina/metabolismo , Fibrose , Mitocôndrias/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo , Endométrio/metabolismo , Endométrio/patologiaRESUMO
SUMMARY: Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in various tumor tissues and cell lines was found to promote tumor cell proliferation, migration, and invasion. However, the role of MALAT1 in gastric cancer (GC) is still unclear. We aimed to investigate the correlation between long-chain non-coding RNAs (lncRNAs), MALAT1, MicroRNAs (miRNA) and vascular endothelial growth factor A (VEGFA) in gastric cancer and to disclose underlying mechanism. The correlation between MALAT1 levels and clinical features was analyzed by bioinformatics data and human samples. The expression of MALAT1 was down regulated in AGS cells to detect the cell proliferation, migration, and invasion characteristics, as well as the effects on signal pathways. Furthermore, we validated the role of MALAT1/miR-330-3p axis in GC by dual luciferase reporter gene assays. Expression of MALAT1 was higher in cancer tissues than in para-cancerous tissues. The high MALAT1 level predicted malignancy and worse prognosis. Down-regulation of MALAT1 expression in AGS cells inhibited cell proliferation, migration, and invasion by targeting VEGFA. By dual luciferase reporter gene assay and miR-330-3p inhibitor treatment, we demonstrate that MALAT1 sponged miR-330-3p in GC, leading to VEGFA upregulation and activation of the mTOR signaling pathway. The MALAT1/miR-330-3p axis regulates VEGFA through the mTOR signaling pathway and promotes the growth and metastasis of gastric cancer.
Se descubrió que la sobreexpresión del transcrito 1 de adenocarcinoma de pulmón asociado a metástasis (MALAT1) en varios tejidos tumorales y líneas celulares promueve la proliferación, migración e invasión de células tumorales. Sin embargo, el papel de MALAT1 en el cáncer gástrico (CG) aún no está claro. Nuestro objetivo fue investigar la correlación entre los ARN no codificantes de cadena larga (lncRNA), MALAT1, los microARN (miARN) y el factor de crecimiento endotelial vascular A (VEGFA) en el cáncer gástrico y revelar el mecanismo subyacente. La correlación entre los niveles de MALAT1 y las características clínicas se analizó mediante datos bioinformáticos y muestras humanas. La expresión de MALAT1 se reguló negativamente en las células AGS para detectar las características de proliferación, migración e invasión celular, así como los efectos sobre las vías de señales. Además, validamos el papel del eje MALAT1/miR- 330-3p en GC mediante ensayos de genes indicadores de luciferasa dual. La expresión de MALAT1 fue mayor en tejidos cancerosos que en tejidos paracancerosos. El alto nivel de MALAT1 predijo malignidad y peor pronóstico. La regulación negativa de la expresión de MALAT1 en células AGS inhibió la proliferación, migración e invasión celular al apuntar a VEGFA. Mediante un ensayo de gen indicador de luciferasa dual y un tratamiento con inhibidor de miR-330-3p, demostramos que MALAT1 esponjaba miR-330-3p en GC, lo que lleva a la regulación positiva de VEGFA y la activación de la vía de señalización mTOR. El eje MALAT1/miR-330-3p regula VEGFA a través de la vía de señalización mTOR y promueve el crecimiento y la metástasis del cáncer gástrico.
Assuntos
Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fator A de Crescimento do Endotélio Vascular , Serina-Treonina Quinases TOR , RNA Longo não Codificante , RNA/genética , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Western Blotting , Apoptose , Genes Reporter , Proliferação de Células , Reação em Cadeia da Polimerase em Tempo Real , Invasividade NeoplásicaRESUMO
This chapter outlines the methodology employed to infect the chorionic and amniotic membranes with Mycobacterium tuberculosis during pregnancy. Particularly, congenital tuberculosis, a rare and serious condition associated with cases in neonates and reactivation of latent tuberculosis in pregnant mothers, is interesting to study. Understanding the mechanisms of infection and the response of fetal membranes is crucial for developing effective treatments in these cases, which will promote better neonatal and maternal health in situations of tuberculosis during pregnancy. Establishing a standardized infection model in the chorioamniotic membranes is imperative, followed by a treatment protocol for isolating both cellular and mycobacterial RNA. This will enable the expression analysis during the maternal-fetal interface interaction with M. tuberculosis. The proposed methodology might be invaluable for qRT-PCR, microarrays, and sequencing research.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Gravidez , Recém-Nascido , Feminino , Humanos , Mycobacterium tuberculosis/genética , RNA , Membranas Extraembrionárias , ÂmnioRESUMO
Background: Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.
Assuntos
Cistatinas , Monócitos , Humanos , Animais , Camundongos , Ascaris lumbricoides , Ácido Mevalônico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Inflamação/metabolismo , Imunidade , Células Dendríticas , RNA/metabolismoRESUMO
Circular RNAs (circRNAs) are noncoding singlestranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and posttranscriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to highglucose concentrations and the transcription factors cJun and cFos are reported.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Neoplasias , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Nefropatias Diabéticas/genética , RNA/genética , Neoplasias/genética , Regulação da Expressão GênicaRESUMO
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.
Assuntos
Leishmaniose , Psychodidae , Rhabdoviridae , Humanos , Animais , América do Sul , RNA , DNA , BrasilRESUMO
The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.
Assuntos
Aprendizado Profundo , RNA não Traduzido/genética , Algoritmos , RNA , Redes Neurais de ComputaçãoRESUMO
A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.
Assuntos
MicroRNAs , Estabilidade de RNA , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/genética , RNA/metabolismo , RNA Circular/metabolismo , Humanos , Animais , CamundongosRESUMO
This work reports the construction of an HIV-specific genosensor through the modification of carbon screen-printed electrodes (CSPE) with graphene quantum dots decorated with L-cysteine and gold nanoparticles (cys-GQDs/AuNps). Cys-GQDs were characterized by FT-IR and UV-vis spectra and electronic properties of the modified electrodes were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The modification of the electrode surface with cys-GQDs and AuNps increased the electrochemical performance of the electrode, improving the electron transfer of the anionic redox probe [Fe(CN)6]3-/4- on the electrochemical platform. When compared to the bare surface, the modified electrode showed a 1.7 times increase in effective electrode area and a 29 times decrease in charge transfer resistance. The genosensor response was performed by differential pulse voltammetry, monitoring the current response of the anionic redox probe, confirmed with real genomic RNA samples, making it possible to detect 1 fg/mL. In addition, the genosensor maintained its response for 60 days at room temperature. This new genosensor platform for early detection of HIV, based on the modification of the electrode surface with cys-GQDs and AuNps, discriminates between HIV-negative and positive samples, showing a low detection limit, as well as good specificity and stability, which are relevant properties for commercial application of biosensors.
Assuntos
Técnicas Biossensoriais , Grafite , Infecções por HIV , Nanopartículas Metálicas , Pontos Quânticos , Humanos , Grafite/química , Pontos Quânticos/química , Ouro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Cisteína , Técnicas Biossensoriais/métodos , Eletrodos , RNA , Limite de DetecçãoRESUMO
INTRODUCTION: In Colombia, thyroid cancer ranks among the highest incidences, yet our population lacks studies on its molecular profile. This study aims to characterize clinical, histopathologic and molecular data in a Colombian cohort with papillary thyroid carcinoma (PTC). METHODS: A retrospective review of clinical history, clinicopathologic characteristics, treatment and 5-10-year follow-up for all patients was done. DNA and RNA were extracted from formalin-fixed paraffin-embedded (FFPE) tissue using the Quick-DNA & RNA FFPE Min iPrep kit (Zymo Research). Next-generation sequencing (NGS) analysis was performed with SOPHiA Solid Tumor Solutions kit (SOPHiA GENETICS). Tumor mutation genomic analysis used SOPHiA DDM™ platform, with descriptive analysis reporting frequencies, means and associations via chi-square analysis. RESULTS: Among 231 sequenced patients, mean age at diagnosis was 46 (± 12.35) years, with higher frequency in women (81.82%). Two cases were reclassified as non-invasive follicular thyroid neoplasm (NIFT-P); an NRAS mutation was found in one of them. Predominant histologic subtype was classic PTC (57.64%) followed by tall cell (28.82%). Of the 229 sequenced carcinomas, mutations were identified in 186 cases, including BRAF, IDH1, RAS and PIK3CA. Notable copy number variations (CNVs) were PDGFRA, CDK4 and KIT, with RET being the most frequent gene fusion, including CCDC6-RET in two classic subtype cases. CONCLUSION: This is the first study in Colombia (TIROSEC) to our knowledge that integrates molecular and histopathologic profiles enriching our local comprehension and knowledge of PTC. The identification of target mutations such as BRAF, RET and NTRK fusions holds the potential to guide targeted therapies for tumor recurrence and predict aggressive behavior.