Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.331
Filtrar
1.
Biomed Phys Eng Express ; 10(5)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955138

RESUMO

This work aims to improve the post stabilty of reusable potassium iodide hydrogel dosimter. A reusable and low-cost radiochromic dosimeter containing a gel matrix of polyvinyl alcohol, potassium iodide dye, froctose as reducing agent and glutaraldehyde as cross-linking agent was developed for dose calibration in radiotherapy. The gel samples were exposed to different absorbed doses using a medical linear acceleration. UV-vis Spectrophotometry was utilized to investigate the changes in optical-properties of irradiated gels with regard to peak wavelength of 353 nm. The stability of the gel (one of the most limitation of using this dosimeter) was improved significantly by the addition of certain concentrations of dimethyl sulfoxide. The two-dimensional optical imaging system of charge-coupled-device (CCD) camera with a uniform RGB light-emitting-diode (LED) array source was used for diffusion coefficient purpose using two dimensional gel template. The value of diffusion coefficient reported is significant and highly reduced compared with other dosimeters reported in the literatures. Moreover, heating the improved gels to certain temperatures results in resetting their optical properties, which makes it possible to reuse for multiple times.


Assuntos
Estudos de Viabilidade , Álcool de Polivinil , Iodeto de Potássio , Dosímetros de Radiação , Álcool de Polivinil/química , Iodeto de Potássio/química , Calibragem , Géis/química , Humanos , Hidrogéis/química , Radiometria/métodos , Radiometria/instrumentação , Dimetil Sulfóxido/química , Glutaral/química , Difusão , Temperatura
2.
Phys Med ; 123: 103427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959576

RESUMO

BACKGROUND: Reirradiation of head and neck cancer (HNC) became more accessible in the last decade, owing to modern irradiation techniques which offer a reduction in treatment related toxicities. The aim of this paper was to comparatively evaluate the dosimetric aspects derived from intensity modulated photon vs. proton treatment planning in reirradiated HNC patients. METHODS: Six recurrent HNC patients were enrolled in this retrospective study. For each patient two treatment plans were created: one IMRT/VMAT and one IMPT plan. The prescribed dose for the second irradiation was between 50 and 70 Gy RBE. The study comparatively analyzed the CTV coverage, doses to organs at risk (OARs) and low doses received by the healthy tissue (other than OAR). RESULTS: Similar CTV coverage was achieved for photon vs proton plans, with the latter presenting better homogeneity in four cases. Maximum dose to CTV was generally higher for photon plans, with differences ranging from 0.3 to 1.9%. For parotid glands and body, the mean dose was lower for proton plans. A notable reduction of low dose to healthy tissue (other than OARs) could be achieved with protons, with an average of 60% and 64% for D10% and Dmean, respectively. CONCLUSION: The dosimetric comparison between photon and proton reirradiation of HNC showed a great need for treatment individualization, concluding that protons should be considered for reirradiation on an individual basis.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Fótons , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Reirradiação , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/métodos , Fótons/uso terapêutico , Radioterapia de Intensidade Modulada/métodos , Reirradiação/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Estudos Retrospectivos
3.
Phys Med Biol ; 69(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964312

RESUMO

Objective.To present a new set of lithium-ion cross-sections for (i) ionization and excitation processes down to 700 eV, and (ii) charge-exchange processes down to 1 keV u-1. To evaluate the impact of the use of these cross-sections on micro a nano dosimetric quantities in the context of boron neutron capture (BNC) applications/techniques.Approach.The Classical Trajectory Monte Carlo method was used to calculate Li ion charge-exchange cross sections in the energy range of 1 keV u-1to 10 MeV u-1. Partial Li ion charge states ionization and excitation cross-sections were calculated using a detailed charge screening factor. The cross-sections were implemented in Geant4-DNA v10.07 and simulations and verified using TOPAS-nBio by calculating stopping power and continuous slowing down approximation (CSDA) range against data from ICRU and SRIM. Further microdosimetric and nanodosimetric calculations were performed to quantify differences against other simulation approaches for low energy Li ions. These calculations were: lineal energy spectra (yf(y) andyd(y)), frequency mean lineal energyyF-, dose mean lineal energyyD-and ionization cluster size distribution analysis. Microdosimetric calculations were compared against a previous MC study that neglected charge-exchange and excitation processes. Nanodosimetric results were compared against pure ionization scaled cross-sections calculations.Main results.Calculated stopping power differences between ICRU and Geant4-DNA decreased from 33.78% to 6.9%. The CSDA range difference decreased from 621% to 34% when compared against SRIM calculations. Geant4-DNA/TOPAS calculated dose mean lineal energy differed by 128% from the previous Monte Carlo. Ionization cluster size frequency distributions for Li ions differed by 76%-344.11% for 21 keV and 2 MeV respectively. With a decrease in theN1within 9% at 10 keV and agreeing after the 100 keV. With the new set of cross-sections being able to better simulate low energy behaviors of Li ions.Significance.This work shows an increase in detail gained from the use of a more complete set of low energy cross-sections which include charge exchange processes. Significant differences to previous simulation results were found at the microdosimetric and nanodosimetric scales that suggest that Li ions cause less ionizations per path length traveled but with more energy deposits. Microdosimetry results suggest that the BNC's contribution to cellular death may be mainly due to alpha particle production when boron-based drugs are distributed in the cellular membrane and beyond and by Li when it is at the cell cytoplasm regions.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio , Método de Monte Carlo , Radiometria , Lítio/química , Terapia por Captura de Nêutron de Boro/métodos , Nanotecnologia , Elasticidade
4.
J Cancer Res Ther ; 20(3): 763-769, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023580

RESUMO

PURPOSE: The current study aims to compare the split x-jaw planning technique of volumetric modulated arc radiotherapy (VMAT) with the traditional open and limited jaw techniques of VAMT in nasopharyngeal carcinoma treatment. The multi-leaf collimators on the varian linear accelerator move on a carriage with a maximum leaf span of 15 cm. Therefore, treatment of larger planning target volumes, such as in nasopharyngeal cancer with traditional open and limited jaw technique, yields compromised dose distribution. METHOD: Computed tomography data sets of 10 nasopharynx cancer patients were enrolled for the study. For each case, three separate treatment plans were generated viz. open, limited, and split x-jaw planning techniques with similar planning objectives. Only PTVs requiring a field size larger than 18 cm in the x-jaw position were considered. RESULTS: Comparable results were obtained regarding organs at risk (OAR) sparing in all the techniques. The target dose coverage with split x-jaw VMAT was superior to both open and limited jaw planning techniques, with a statistically significant difference in the intermediate dose planning target volumes (PTVs) (PTV59.4), P < 0.05. However, the split technique's dose to the spinal cord and larynx was significantly lower (P < 0.05). CONCLUSION: The split x-jaw planning technique of VMAT can be adapted for larger PTVs requiring an x-jaw of more than 15 cm. The only concern with this technique is the increased MU.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Nasofaríngeas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Carcinoma Nasofaríngeo/radioterapia , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Masculino
5.
J Cancer Res Ther ; 20(3): 943-948, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023602

RESUMO

PURPOSE: Low-dose radiation therapy (LDRT) to lungs did show encouraging results in COVID-19 patients in some clinical trials. However, there has been some concern regarding the long-term risk of radiation-induced cancer (RIC). Compared to the conventional AP-PA field technique, volumetric modulated arc therapy (VMAT) can potentially reduce the dose to the marrow and other organs at risk (OARs) and thus minimize the risk of cancer. We designed a dosimetry study to study if VMAT can reduce the exposure to the marrow and other OAR doses and curtail the estimated life-time attributable risk (LAR) of cancer. METHODS AND MATERIALS: We retrieved the computed tomography scan data of 10 patients (aged 40-60 years, median 48 years) who have been already treated for any malignancy in the region of the thorax. A dose of 1.0 Gy in single fraction was prescribed to both lungs. All the organs were delineated as per the established guidelines. The dosimetry achieved by the two plans was compared to find the difference. Mean OAR doses were used to estimate the LAR for both plans and compared. RESULTS: Planning target volume coverage parameters like conformity index and homogeneity index were significantly better with VMAT (P value < 0.05 for all). The mean dose to most OARs was significantly lower with VMAT (P value < 0.05 for all). The mean dose to the marrow was significantly lower with VMAT (59.05 vs 81.9 cGy with P value < 0.05). The overall LAR was significantly lower with VMAT as compared to the conventional plan (0.357% vs 0.398%, P value < 0.05). CONCLUSION: Compared to the conventional technique, VMAT provides better OAR dosimetry for lung irradiation (a prescription dose of 1.0 Gy or more) in COVID-19 pneumonia. VMAT significantly reduces the risk of RIC. We therefore suggest if lung LDRT is used for COVID-19 patients, VMAT is the preferred technique for a prescription dose of ≥1.0 Gy.


Assuntos
Medula Óssea , COVID-19 , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Pessoa de Meia-Idade , Masculino , Órgãos em Risco/efeitos da radiação , Adulto , Planejamento da Radioterapia Assistida por Computador/métodos , Medula Óssea/efeitos da radiação , Feminino , Pulmão/efeitos da radiação , Pulmão/diagnóstico por imagem , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/prevenção & controle
6.
Phys Med Biol ; 69(15)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959910

RESUMO

Objective.To develop and benchmark a novel 3D dose verification technique consisting of polymer gel dosimetry (PGD) with cone-beam-CT (CBCT) readout through a two-institution study. The technique has potential for wide and robust applicability through reliance on CBCT readout.Approach. Three treatment plans (3-field, TG119-C-shape spine, 4-target SRS) were created by two independent institutions (Institutions A and B). A Varian Truebeam linear accelerator was used to deliver the plans to NIPAM polymer gel dosimeters produced at both institutions using an identical approach. For readout, a slow CBCT scan mode was used to acquire pre- and post-irradiation images of the gel (1 mm slice thickness). Independent gel analysis tools were used to process the PGD images (A: VistaAce software, B: in-house MATLAB code). Comparing planned and measured doses, the analysis involved a combination of 1D line profiles, 2D contour plots, and 3D global gamma maps (criteria ranging between 2%1 mm and 5%2 mm, with a 10% dose threshold).Main results. For all gamma criteria tested, the 3D gamma pass rates were all above 90% for 3-field and 88% for the SRS plan. For the C-shape spine plan, we benchmarked our 2% 2 mm result against previously published work using film analysis (93.4%). For 2%2 mm, 99.4% (Institution A data), and 89.7% (Institution B data) were obtained based on VistaAce software analysis, 83.7% (Institution A data), and 82.9% (Institution B data) based on MATLAB.Significance. The benchmark data demonstrate that when two institutions follow the same rigorous procedures gamma passing rates up to 99%, for 2%2 mm criteria can be achieved for substantively different treatment plans. The use of different software and calibration techniques may have contributed to the variation in the 3D gamma results. By sharing the data across institutions, we observe the gamma passing rate is more consistent within each pipeline, indicating the need for standardized analysis methods.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Aceleradores de Partículas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Radiometria/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imageamento Tridimensional/métodos , Polímeros/química
7.
Sci Rep ; 14(1): 16103, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997265

RESUMO

High dose radiation exposures are rare. However, medical management of such incidents is crucial due to mortality and tissue injury risks. Rapid radiation biodosimetry of high dose accidental exposures is highly challenging, considering that they usually involve non uniform fields leading to partial body exposures. The gold standard, dicentric assay and other conventional methods have limited application in such scenarios. As an alternative, we propose Premature Chromosome Condensation combined with Fluorescent In-situ Hybridization (G0-PCC-FISH) as a promising tool for partial body exposure biodosimetry. In the present study, partial body exposures were simulated ex-vivo by mixing of uniformly exposed blood with unexposed blood in varying proportions. After G0-PCC-FISH, Dolphin's approach with background correction was used to provide partial body exposure dose estimates and these were compared with those obtained from conventional dicentric assay and G0-PCC-Fragment assay (conventional G0-PCC). Dispersion analysis of aberrations from partial body exposures was carried out and compared with that of whole-body exposures. The latter was inferred from a multi-donor, wide dose range calibration curve, a-priori established for whole-body exposures. With the dispersion analysis, novel multi-parametric methodology for discerning the partial body exposure from whole body exposure and accurate dose estimation has been formulated and elucidated with the help of an example. Dose and proportion dependent reduction in sensitivity and dose estimation accuracy was observed for Dicentric assay, but not in the two PCC methods. G0-PCC-FISH was found to be most accurate for the dose estimation. G0-PCC-FISH has potential to overcome the shortcomings of current available methods and can provide rapid, accurate dose estimation of partial body and high dose accidental exposures. Biological dose estimation can be useful to predict progression of disease manifestation and can help in pre-planning of appropriate & timely medical intervention.


Assuntos
Hibridização in Situ Fluorescente , Hibridização in Situ Fluorescente/métodos , Humanos , Aberrações Cromossômicas/efeitos da radiação , Exposição à Radiação/efeitos adversos , Radiometria/métodos , Doses de Radiação , Masculino , Relação Dose-Resposta à Radiação
8.
Radiat Prot Dosimetry ; 200(11-12): 989-993, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016481

RESUMO

Radiation dosimetry is an important task for assessing the biological damages created in human being due to ionising radiation exposure. Ionising radiation being invisible and beyond the perception of human natural sensors, the dosimetry equipments/systems are the utmost requirement for its measurement. Retrospective measurement of radiation doses is a challenging task as conventional radiation dosemeters are not available at the exposure site. The material/s in close proximity of exposed individual or individuals' biological samples may be used as retrospective radiation sensor for dosimetry purpose. Environment materials such as sand, bricks, ceramics, sand stones, quartz, feldspar, glasses and electronic chips have been utilised using TL (Thermoluminescence) techniques for retrospective gamma dose (min 10 cGy) measurement. Electron Spin Resonance techniques have been employed to human biological samples such as tooth enamel, bones, nails, hair, etc. and reported for dosimetry for ~20 cGy min dose measurement. Some commercial glasses have been found sensitive enough to measure the minimum gamma doses of the order of 100 cGy using TL techniques. For internal retrospective dosimetry, the radioactivity contamination assessment in food items, water, other edible product and ambient air are the prerequisites. The radioactivity concentration vis-à-vis their consumption rate may help in controlling the internal contamination and estimation of dose absorption in human body. Defence Laboratory, Jodhpur has been working extensively on the dosimetry techniques for external dose measurement using environmental material and developed portable contamination monitoring systems for food and water radioactivity measurement in the range of 50 Bq kg-1 to 1000 kBq kg-1 in 60 s measurement time. The recent research and development in the methodologies, equipments and systems undertaken towards capacity building and self-reliance in retrospective radiation dosimetry is reported in this paper.


Assuntos
Doses de Radiação , Monitoramento de Radiação , Dosimetria Termoluminescente , Humanos , Estudos Retrospectivos , Monitoramento de Radiação/métodos , Dosimetria Termoluminescente/métodos , Dosimetria Termoluminescente/instrumentação , Radiometria/métodos , Raios gama , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radiação Ionizante
9.
Radiat Prot Dosimetry ; 200(11-12): 1138-1142, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016505

RESUMO

Neutron induced reactions play a vital role in the field of nuclear and particle physics. An effort was made to study the neutron-induced reaction cross-section of 115In(n,γ)116mIn with 197Au(n,γ)198Au as monitor reaction and carried out the reaction for the neutron energies of 13.520 ± 0.005 and 14.54 ± 0.24 MeV. The neutrons obtained from the D-T fusion reaction of Purnima neutron generator were used for the activation of the given reaction and the monitor. The covariance analysis and the partial uncertainties due to various attributes were utilised for estimating the uncertainty propagation and hence obtained the correlation for measured reaction cross-sections. The measured reaction cross-sections have been validated with earlier reported data from EXFOR, ENDF data of various libraries, and also theoretically calculated the values of the TALYS-1.9 code.


Assuntos
Nêutrons , Doses de Radiação , Radiometria/métodos , Monitoramento de Radiação/métodos , Raios gama , Ouro/química , Ouro/efeitos da radiação
10.
Radiat Prot Dosimetry ; 200(11-12): 1197-1201, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016512

RESUMO

Improved imaging techniques and modern radiotherapy treatment delivery in the treatment field are reduced to the precise size of the tumor, which necessitates the need for small-field dosimetry. Dosimetry in small-field dosimetry is challenging because most of the available code of practice for dosimetry is based on the cavity theory concept. Some small-sized detectors show good spatial resolution and sensitivity. Of the available small detectors, the diamond detector's performance is remarkably good. Most of the centers for radiotherapy lack diamond detectors. In this situation, if a diode detector is available, we can use it for small-field dosimetry by applying the Daisy Chaining method correction methods. In this study, the diode detector's response is not over-responding because of the defective diode. So this diode cannot be used for further measurements, and we have to regularly check the performance of the diode before using it for measurements.


Assuntos
Estudos de Viabilidade , Radiometria , Radiometria/instrumentação , Radiometria/métodos , Humanos , Desenho de Equipamento , Dosagem Radioterapêutica , Semicondutores , Proteção Radiológica/instrumentação
11.
Technol Cancer Res Treat ; 23: 15330338241259633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887092

RESUMO

PURPOSE: We report a dosimetric study in whole breast irradiation (WBI) of plan robustness evaluation against position error with two radiation techniques: tangential intensity-modulated radiotherapy (T-IMRT) and multi-angle IMRT (M-IMRT). METHODS: Ten left-sided patients underwent WBI were selected. The dosimetric characteristics, biological evaluation and plan robustness were evaluated. The plan robustness quantification was performed by calculating the dose differences (Δ) of the original plan and perturbed plans, which were recalculated by introducing a 3-, 5-, and 10-mm shift in 18 directions. RESULTS: M-IMRT showed better sparing of high-dose volume of organs at risk (OARs), but performed a larger low-dose irradiation volume of normal tissue. The greater shift worsened plan robustness. For a 10-mm perturbation, greater dose differences were observed in T-IMRT plans in nearly all directions, with higher ΔD98%, ΔD95%, and ΔDmean of CTV Boost and CTV. A 10-mm shift in inferior (I) direction induced CTV Boost in T-IMRT plans a 1.1 (ΔD98%), 1.1 (ΔD95%), and 1.7 (ΔDmean) times dose differences greater than dose differences in M-IMRT plans. For CTV Boost, shifts in the right (R) and I directions generated greater dose differences in T-IMRT plans, while shifts in left (L) and superior (S) directions generated larger dose differences in M-IMRT plans. For CTV, T-IMRT plans showed higher sensitivity to a shift in the R direction. M-IMRT plans showed higher sensitivity to shifts in L, S, and I directions. For OARs, negligible dose differences were found in V20 of the lungs and heart. Greater ΔDmax of the left anterior descending artery (LAD) was seen in M-IMRT plans. CONCLUSION: We proposed a plan robustness evaluation method to determine the beam angle against position uncertainty accompanied by optimal dose distribution and OAR sparing.


Assuntos
Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Feminino , Órgãos em Risco/efeitos da radiação , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Radiometria/métodos , Pessoa de Meia-Idade
12.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893435

RESUMO

This work describes the development of a reusable 2D detector based on radiochromic reaction for radiotherapy dosimetric measurements. It consists of a radiochromic gel dosimeter in a cuboidal plastic container, scanning with a flatbed scanner, and data processing using a dedicated software package. This tool is assessed using the example of the application of the coincidence test of radiation and mechanical isocenters for a medical accelerator. The following were examined: scanning repeatability and image homogeneity, the impact of image processing on data processing in coincidence tests, and irradiation conditions-monitor units per radiation beam and irradiation field are selected. Optimal conditions for carrying out the test are chosen: (i) the multi-leaf collimator gap should preferably be 5 mm for 2D star shot irradiation, (ii) it is recommended to apply ≥2500-≤5000 MU per beam to obtain a strong signal enabling easy data processing, (iii) Mean filter can be applied to the images to improve calculations. An approach to dosimeter reuse with the goal of reducing costs is presented; the number of reuses is related to the MUs per beam, which, in this study, is about 5-57 for 30,000-2500 MU per beam (four fields). The proposed reusable system was successfully applied to the coincidence tests, confirming its suitability as a new potential quality assurance tool in radiotherapy.


Assuntos
Radiação Ionizante , Radiometria/métodos , Radiometria/instrumentação , Géis/química , Radioterapia/métodos , Dosagem Radioterapêutica , Dosímetros de Radiação , Aceleradores de Partículas
13.
Phys Med Biol ; 69(14)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38914107

RESUMO

Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.


Assuntos
Neoplasias Encefálicas , Imagens de Fantasmas , Impressão Tridimensional , Radiometria , Síncrotrons , Ratos , Animais , Radiometria/instrumentação , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Dosagem Radioterapêutica , Método de Monte Carlo , Garantia da Qualidade dos Cuidados de Saúde , Desenho de Equipamento
14.
Igaku Butsuri ; 44(2): 21-28, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38945879

RESUMO

BACKGROUND: A new quality assurance and control method for electrometers using a new current source, different from the method published in the guidelines for electrometers, has been reported. This current source uses dry batteries and exhibits excellent performance in terms of voltage, temperature, and time characteristics. The electrometer sensitivity coefficient can be calculated by comparing the sensitivity of one electrometer with that of another on the electrometer calibration coefficient that has been calibrated by a calibration laboratory in advance in both methods. The guideline method requires two or more sets of ionization chambers and electrometers in the facility. In contrast, our method does not use ionization chambers; therefore, the sensitivity ratio of the electrometer can be measured in any facility. This study compared the uncertainty of the electrometer sensitivity factor calculated using the new current source method (current method) with that calculated using a linear accelerator (LINAC) and ionization chambers (LINAC method) described in the electrometer guidelines. METHOD: In this study, we used a current source that we invented previously by Kawaguchi Electric Works in Japan. The sensitivity ratios of the electrometers were measured with three manufacture's electrometers. The electrometer sensitivity factor was calculated by multiplying the electrometer calibration coefficient. The ionization chamber was 30013 (PTW), and the current source was the current obtained from 10 MV TrueBeam X-rays under calibration conditions. The mean value, standard deviation, and coefficient of variation were calculated. The time required to set up the ionization chamber for calculating the sensitivity ratio of the electrometer was also measured. The accuracy was confirmed by calculating the expanded uncertainty of the electrometer sensitivity coefficients. RESULTS: The LINAC method had a maximum coefficient of variation of 0.072%. The gross time of the LINAC method was approximately 110 min. The current method had a maximum coefficient of variation of 0.0055% and took less than half the time taken by the LINAC method (35 min) because there was no waiting time for the ionization chamber to be set up and the applied voltage to stabilize under calibration conditions. The expanded uncertainties of the electrometer calibration coefficients were 0.36% and 0.36%, respectively. CONCLUSION: The new cross-comparison method for electrometer sensitivity factors using a current source is more efficient and useful than the linear accelerator method described in the guidelines; furthermore, this method ensured accuracy for quality assurance and control of electrometers.


Assuntos
Dosímetros de Radiação , Incerteza , Calibragem , Guias como Assunto , Radiometria/instrumentação , Radiometria/métodos , Aceleradores de Partículas
15.
Phys Med Biol ; 69(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38870996

RESUMO

Objective. To quantitatively investigate the impact of spot position error (PE) on the dose distribution in (Spot-scanning arc therapy) SPArc plans compared to Intensity-Modulated Proton Therapy (IMPT).Approach.Twelve representative cases, including brain, lung, liver, and prostate cancers, were retrospectively selected. Spot PEs were simulated during dynamic SPArc treatment delivery. Two types of errors were generated, including random error and systematic error. Two different probability distributions of random errors were used (1) Gaussian distribution (PEran-GS) (2) uniform distribution (PEran-UN). In PEran-UN, four sub-scenarios were considered: 25%, 50%, 75%, and 100% spots were randomly selected in various directions on the scale of 0-1 mm or 0-2 mm of PE. Additionally, systematic error was simulated by shifting all the spot uniformly by 1 or 2 mm in various directions (PEsys). Gamma-index Passing Rate (GPR) is applied to assess the dosimetric perturbation quantitatively.Main results.For PEran-GSin the 1 mm scenario, both SPArc and IMPT are comparable with a GPR exceeding 99%. However, for PEran-GSin 2 mm scenario, SPArc could provide better GPR. As PEsysof 2 mm, SPArc plans have a much better GPR compared to IMPT plans: SPArc's GPR is 99.59 ± 0.47%, 93.82 ± 4.07% and 64.58 ± 15.83% for 3 mm/3%, 2 mm/2% and 1 mm/1% criteria compared to IMPT with 97.49 ± 2.44%, 84.59 ± 4.99% and 42.02 ± 6.31%.Significance.Compared to IMPT, SPArc shows better dosimetric robustness in spot PEs. This study presents the first simulation results and the methodology that serves as a reference to guide future investigations into the accuracy and quality assurance of SPArc treatment delivery.


Assuntos
Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias/radioterapia , Terapia com Prótons/métodos
16.
Radiat Prot Dosimetry ; 200(10): 945-955, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38847407

RESUMO

The article reviews the historical developments in radiation dose metrices in medical imaging. It identifies the good, the bad, and the ugly aspects of current-day metrices. The actions on shifting focus from International Commission on Radiological Protection (ICRP) Reference-Man-based population-average phantoms to patient-specific computational phantoms have been proposed and discussed. Technological developments in recent years involving AI-based automatic organ segmentation and 'near real-time' Monte Carlo dose calculations suggest the feasibility and advantage of obtaining patient-specific organ doses. It appears that the time for ICRP and other international organizations to embrace 'patient-specific' dose quantity representing risk may have finally come. While the existing dose metrices meet specific demands, emphasis needs to be also placed on making radiation units understandable to the medical community.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica , Humanos , Proteção Radiológica/métodos , Radiometria/métodos
17.
Sci Rep ; 14(1): 14347, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907042

RESUMO

In breast cancer radiation therapy, minimizing radiation-related risks and toxicity is vital for improving life expectancy. Tailoring radiotherapy techniques and treatment positions can reduce radiation doses to normal organs and mitigate treatment-related toxicity. This study entailed a dosimetric comparison of six different external beam whole-breast irradiation techniques in both supine and prone positions. We selected fourteen breast cancer patients, generating six treatment plans in both positions per patient. We assessed target coverage and organs at risk (OAR) doses to evaluate the impact of treatment techniques and positions. Excess absolute risk was calculated to estimate potential secondary cancer risk in the contralateral breast, ipsilateral lung, and contralateral lung. Additionally, we analyzed the distance between the target volume and OARs (heart and ipsilateral lung) while considering the treatment position. The results indicate that prone positioning lowers lung exposure in X-ray radiotherapy. However, particle beam therapies (PBTs) significantly reduce the dose to the heart and ipsilateral lung regardless of the patient's position. Notably, negligible differences were observed between arc-delivery and static-delivery PBTs in terms of target conformity and OAR sparing. This study provides critical dosimetric evidence to facilitate informed decision-making regarding treatment techniques and positions.


Assuntos
Neoplasias da Mama , Órgãos em Risco , Dosagem Radioterapêutica , Humanos , Feminino , Neoplasias da Mama/radioterapia , Decúbito Ventral , Decúbito Dorsal , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Posicionamento do Paciente/métodos , Pulmão/efeitos da radiação , Pessoa de Meia-Idade , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Coração/efeitos da radiação
18.
Phys Med ; 122: 103390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833878

RESUMO

PURPOSE: This study discusses the measurement of dose in clinical commissioning tests described in IAEA-TECDOC-1583. It explores the application of Monte Carlo (MC) modelled medium dependency correction factors (Kmed) for accurate dose measurement in bone and lung materials using the CIRS phantom. METHODS: BEAMnrc codes simulate radiation sources and model radiation transport for 6 MV and 15 MV photon beams. CT images of the CIRS phantom are converted to an MC compatible phantom. The PTW 30013 farmer chamber measures doses within modeled CIRS phantom. Kmed are determined by averaging values from four central voxels within the sensitive volume of the farmer chamber. Kmed is calculated for Dm.m and Dw.w algorithm types in bone and lung media for both photon beams. RESULTS: Average modelled correction factors for Dm.m calculations using the farmer chamber are 0.976 (±0.1 %) for 6 MV and 0.979 (±0.1 %) for 15 MV in bone media. Correspondingly, correction factors for Dw.w calculations are 0.99 (±0.3 %) and 0.992 (±0.4 %), respectively. For lung media, average correction factors for Dm.m calculations are 1.02 (±0.3 %) for 6 MV and 1.022 (±0.4 %) for 15 MV. Correspondingly, correction factors for Dw.w calculations are 1.01 (±0.3 %) and 1.012 (±0.2 %), respectively. CONCLUSIONS: This study highlights the significant impact of applying Kmed on dose differences between measurement and calculation during the dose audit process.


Assuntos
Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Osso e Ossos/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Radiometria/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
19.
Phys Med Biol ; 69(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38862000

RESUMO

Objective.In proton pencil beam scanning (PBS) continuous delivery, the beam is continuously delivered without interruptions between spots. For synchrotron-based systems, the extracted beam current exhibits a spill structure, and recent publications on beam current measurements have demonstrated significant fluctuations around the nominal values. These fluctuations potentially lead to dose deviations from those calculated assuming a stable beam current. This study investigated the dosimetric implications of such beam current fluctuations during proton PBS continuous scanning.Approach.Using representative clinical proton PBS plans, we performed simulations to mimic a worst-case clinical delivery environment with beam current varies from 50% to 250% of the nominal values. The simulations used the beam delivery parameters optimized for the best beam delivery efficiency of the upcoming particle therapy system at Mayo Clinic Florida. We reconstructed the simulated delivered dose distributions and evaluated the dosimetric impact of beam current fluctuations.Main results.Despite significant beam current fluctuations resulting in deviations at each spot level, the overall dose distributions were nearly identical to those assuming a stable beam current. The 1 mm/1% Gamma passing rate was 100% for all plans. Less than 0.2% root mean square error was observed in the planning target volume dose-volume histogram. Minimal differences were observed in all dosimetric evaluation metrics.Significance.Our findings demonstrate that with our beam delivery system and clinical planning practice, while significant beam current fluctuations may result in large local move monitor unit deviations at each spot level, the overall impact on the dose distribution is minimal.


Assuntos
Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons , Terapia com Prótons/métodos , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo
20.
J Radiol Prot ; 44(2)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38834035

RESUMO

Nuclear medicine (NM) professionals are potentially exposed to high doses of ionising radiation, particularly in the skin of the hands. Ring dosimeters are used by the workers to ensure extremity doses are kept below the legal limits. However, ring dosimeters are often susceptible to large uncertainties, so it is difficult to ensure a correct measurement using the traditional occupational monitoring methods. An alternative solution is to calculate the absorbed dose by using Monte Carlo simulations. This method could reduce the uncertainty in dose calculation if the exact positions of the worker and the radiation source are represented in these simulations. In this study we present a set of computer vision and artificial intelligence algorithms that allow us to track the exact position of unshielded syringes and the hands of NM workers. We showcase a possible hardware configuration to acquire the necessary input data for the algorithms. And finally, we assess the tracking confidence of our software. The tracking accuracy achieved for the syringe detection was 57% and for the hand detection 98%.


Assuntos
Algoritmos , Medicina Nuclear , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Mãos/efeitos da radiação , Método de Monte Carlo , Inteligência Artificial , Radiometria/métodos , Seringas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA