Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.077
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975331

RESUMO

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Assuntos
Enzima de Conversão de Angiotensina 2 , Autopsia , COVID-19 , SARS-CoV-2 , Serina Endopeptidases , Língua , Tropismo Viral , Humanos , COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Língua/virologia , Língua/patologia , Masculino , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Pessoa de Meia-Idade , Serina Endopeptidases/metabolismo , Glândulas Salivares/virologia , Glândulas Salivares/patologia , Idoso , Papilas Gustativas/virologia , Papilas Gustativas/patologia , Receptores Virais/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1371837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994005

RESUMO

Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores Virais , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Células A549 , Receptores Virais/metabolismo , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Coloração e Rotulagem/métodos , Células HEK293 , Biotinilação , Mapeamento de Interação de Proteínas , Biotina/metabolismo
3.
Elife ; 122024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046448

RESUMO

Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed ß-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.


Assuntos
Vírus da Cinomose Canina , Polissacarídeos , Internalização do Vírus , Vírus da Cinomose Canina/química , Vírus da Cinomose Canina/imunologia , Animais , Polissacarídeos/química , Polissacarídeos/metabolismo , Cães , Cinomose/virologia , Cinomose/prevenção & controle , Cristalografia por Raios X , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Multimerização Proteica , Vacinação , Conformação Proteica , Vacinas Virais/imunologia , Vacinas Virais/química , Receptores Virais/metabolismo , Receptores Virais/química , Modelos Moleculares
4.
Food Microbiol ; 123: 104591, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038896

RESUMO

Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Ligação Viral , Norovirus/genética , Norovirus/fisiologia , Humanos , Gastroenterite/virologia , Gastroenterite/microbiologia , Infecções por Caliciviridae/virologia , Receptores Virais/metabolismo , Receptores Virais/genética , Animais , Antígenos de Grupos Sanguíneos/metabolismo , Microbiologia de Alimentos
5.
Cancer Immunol Immunother ; 73(9): 180, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967649

RESUMO

TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Leucemia Mieloide Aguda , Receptores Imunológicos , Receptores Virais , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Receptores Imunológicos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores Virais/metabolismo , Citocinas/metabolismo , Masculino , Feminino
6.
Cell Rep Med ; 5(7): 101647, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019006

RESUMO

Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.


Assuntos
Cálcio , Hidrocefalia , Proteínas de Membrana Transportadoras , Mitocôndrias , Células-Tronco Neurais , Receptores Virais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Mitocôndrias/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Cálcio/metabolismo , Humanos , Receptores Virais/metabolismo , Receptores Virais/genética , Camundongos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Neurogênese/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética
7.
Cell Host Microbe ; 32(6): 945-946, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870904

RESUMO

In this issue of Cell Host & Microbe, Shang et al. identify murine neuropilin 1 as a host factor that binds reovirus particles, directing cell entry and contributing to viral dissemination and neurovirulence. This study highlights the reovirus model system to investigate host receptors and their significance in viral pathogenesis.


Assuntos
Neurônios , Neuropilina-1 , Reoviridae , Internalização do Vírus , Animais , Camundongos , Neurônios/virologia , Neuropilina-1/metabolismo , Reoviridae/fisiologia , Reoviridae/genética , Reoviridae/patogenicidade , Humanos , Interações Hospedeiro-Patógeno , Infecções por Reoviridae/virologia , Receptores Virais/metabolismo
8.
Nat Microbiol ; 9(7): 1764-1777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849624

RESUMO

Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.


Assuntos
Endocitose , Camundongos Knockout , Receptores de Glutamato Metabotrópico , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Camundongos , Humanos , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Clatrina/metabolismo , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/metabolismo , Células HEK293 , Actinas/metabolismo , Cães , Células Madin Darby de Rim Canino , Receptores Virais/metabolismo , Receptores Virais/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , Orthomyxoviridae/fisiologia , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo
9.
Nat Commun ; 15(1): 5352, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914547

RESUMO

Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.


Assuntos
Antígeno B7-H1 , Carcinoma de Células Escamosas , Plasticidade Celular , Transição Epitelial-Mesenquimal , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias Cutâneas , Animais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Camundongos , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Imunoterapia/métodos , Transição Epitelial-Mesenquimal/imunologia , Plasticidade Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/imunologia , Receptores Virais/metabolismo , Receptores Virais/genética , Antígeno B7-1/metabolismo , Receptores Imunológicos/metabolismo
10.
Nat Commun ; 15(1): 4906, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851803

RESUMO

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.


Assuntos
Alphavirus , Antivirais , Receptores de LDL , Internalização do Vírus , Animais , Humanos , Alphavirus/efeitos dos fármacos , Alphavirus/fisiologia , Alphavirus/genética , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/virologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Ligação Proteica , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Receptores Virais/química , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos
11.
Emerg Infect Dis ; 30(7): 1361-1373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861554

RESUMO

In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.


Assuntos
Virus da Influenza A Subtipo H5N1 , Glândulas Mamárias Animais , Infecções por Orthomyxoviridae , Receptores de Superfície Celular , Animais , Bovinos , Glândulas Mamárias Animais/virologia , Feminino , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Receptores de Superfície Celular/metabolismo , Doenças dos Bovinos/virologia , Indústria de Laticínios , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Influenza Aviária/virologia
12.
Microbiol Spectr ; 12(7): e0422023, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864599

RESUMO

The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Internalização do Vírus , Replicação Viral , Humanos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano NL63/genética , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Linhagem Celular , Estações do Ano , Cinética , Receptores Virais/metabolismo , Receptores Virais/genética , Resfriado Comum/virologia , Resfriado Comum/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Coronavirus/fisiologia , Coronavirus/genética
13.
PLoS Pathog ; 20(6): e1012317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900833

RESUMO

Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo. We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo. In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms.


Assuntos
Adenovírus Humanos , Tropismo Viral , alfa-Defensinas , alfa-Defensinas/metabolismo , Humanos , Adenovírus Humanos/fisiologia , Adenovírus Humanos/metabolismo , Animais , Camundongos , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Receptores Virais/metabolismo , Internalização do Vírus
14.
Virology ; 597: 110138, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880069

RESUMO

The hemagglutinin-esterase-fusion (HEF) protein binds 9-O-acetylated sialic acids-containing glycans on the cell surface and drives influenza D virus (IDV) entry. The HEF is a primary determinant of the exceptional thermal and acid stability observed in IDV infection biology. Here, we expressed and purified the receptor binding domain (RBD) of the IDV HEF protein in Escherichia coli and characterized its receptor binding and antigenic properties. The data from these experiments indicate that (i) the RBD can bind with specificity to turkey red blood cells (RBC), and its binding can be specifically inhibited by IDV antibody; (ii) the RBD efficiently binds to the cell surface of MDCK cells expressing the receptor of IDV; and (iii) anti-RBD antibodies are capable of blocking RBD attachment to MDCK cells as well as of inhibiting the virus from agglutinating RBCs. These observations support the utility of this RBD in future receptor and entry studies of IDV.


Assuntos
Eritrócitos , Escherichia coli , Ligação Proteica , Receptores Virais , Escherichia coli/genética , Escherichia coli/metabolismo , Animais , Cães , Receptores Virais/metabolismo , Receptores Virais/genética , Células Madin Darby de Rim Canino , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Hemaglutininas Virais/metabolismo , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Expressão Gênica , Anticorpos Antivirais/imunologia , Humanos , Domínios Proteicos , Deltainfluenzavirus
15.
J Virol ; 98(7): e0067924, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842335

RESUMO

In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein ß-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Proteínas do Envelope Viral , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Camundongos , Febre de Chikungunya/virologia , Humanos , Internalização do Vírus , Conformação Proteica , Receptores Virais/metabolismo , Receptores Virais/genética , Mutação , Linhagem Celular , Ligação Proteica , Simulação de Dinâmica Molecular
16.
J Virol ; 98(7): e0069724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916400

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.


Assuntos
Doenças dos Peixes , Receptores de Laminina , Rhabdoviridae , Internalização do Vírus , Animais , Receptores de Laminina/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Bass/virologia , Bass/metabolismo , Receptores Virais/metabolismo , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Endocitose
17.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38889725

RESUMO

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Assuntos
Patos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Antígenos de Histocompatibilidade Classe II , Vírus da Influenza A , Filogenia , Receptores Virais , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Receptores Virais/metabolismo , Receptores Virais/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Patos/virologia , Humanos , Internalização do Vírus , Influenza Aviária/virologia , Sítios de Ligação , Ligação Proteica , Cristalografia por Raios X , Linhagem Celular , Ácido N-Acetilneuramínico/metabolismo , Especificidade de Hospedeiro , Especificidade da Espécie
18.
EMBO Rep ; 25(7): 3116-3136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877169

RESUMO

A novel pangolin-origin MERS-like coronavirus (CoV), MjHKU4r-CoV-1, was recently identified. It is closely related to bat HKU4-CoV, and is infectious in human organs and transgenic mice. MjHKU4r-CoV-1 uses the dipeptidyl peptidase 4 (DPP4 or CD26) receptor for virus entry and has a broad host tropism. However, the molecular mechanism of its receptor binding and determinants of host range are not yet clear. Herein, we determine the structure of the MjHKU4r-CoV-1 spike (S) protein receptor-binding domain (RBD) complexed with human CD26 (hCD26) to reveal the basis for its receptor binding. Measuring binding capacity toward multiple animal receptors for MjHKU4r-CoV-1, mutagenesis analyses, and homology modeling highlight that residue sites 291, 292, 294, 295, 336, and 344 of CD26 are the crucial host range determinants for MjHKU4r-CoV-1. These results broaden our understanding of this potentially high-risk virus and will help us prepare for possible outbreaks in the future.


Assuntos
Dipeptidil Peptidase 4 , Especificidade de Hospedeiro , Ligação Proteica , Receptores Virais , Glicoproteína da Espícula de Coronavírus , Tropismo Viral , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Camundongos , Sítios de Ligação , Internalização do Vírus , Modelos Moleculares , Domínios Proteicos , Tropismo ao Hospedeiro
19.
Front Cell Infect Microbiol ; 14: 1388360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841111

RESUMO

Background: Alphaviruses are a diverse group of pathogens that have garnered considerable attention due to their impact on human health. By investigating alphavirus receptors, researchers can elucidate viral entry mechanisms and gain important clues for the prevention and treatment of viral diseases. This study presents an in-depth analysis of the research progress made in the field of alphavirus receptors through bibliometric analysis. Methods: This study encompasses various aspects, including historical development, annual publication trends, author and cited-author analysis, institutional affiliations, global distribution of research contributions, reference analysis with strongest citation bursts, keyword analysis, and a detailed exploration of recent discoveries in alphavirus receptor research. Results: The results of this bibliometric analysis highlight key milestones in alphavirus receptor research, demonstrating the progression of knowledge in this field over time. Additionally, the analysis reveals current research hotspots and identifies emerging frontiers, which can guide future investigations and inspire novel therapeutic strategies. Conclusion: This study provides an overview of the state of the art in alphavirus receptor research, consolidating the existing knowledge and paving the way for further advancements. By shedding light on the significant developments and emerging areas of interest, this study serves as a valuable resource for researchers, clinicians, and policymakers engaged in combating alphavirus infections and improving public health.


Assuntos
Alphavirus , Bibliometria , Humanos , Receptores Virais/metabolismo , Animais , Internalização do Vírus , Infecções por Alphavirus/virologia , Pesquisa Biomédica/tendências
20.
Nat Commun ; 15(1): 5175, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890325

RESUMO

The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.


Assuntos
Epistasia Genética , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Animais , Camundongos , Sítios de Ligação , Influenza Humana/virologia , Mutação , Cristalografia por Raios X , Vacinas contra Influenza , Ligação Proteica , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA