Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731966

RESUMO

Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Células K562 , Apoptose , Secretoma/metabolismo , Pessoa de Meia-Idade , Feminino , Masculino , Células da Medula Óssea/metabolismo , Linhagem da Célula/genética , Sobrevivência Celular , Adulto
2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673927

RESUMO

Domestic cat blastocysts cultured without the zona pellucida exhibit reduced implantation capacity. However, the protein expression profile has not been evaluated in these embryos. The objective of this study was to evaluate the protein expression profile of domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were generated: (1) domestic cat embryos generated by IVF and cultured in vitro (zona intact, (ZI)) and (2) domestic cat embryos cultured in vitro without the zona pellucida (zona-free (ZF group)). The cleavage, morula, and blastocyst rates were estimated at days 2, 5 and 7, respectively. Day 7 blastocysts and their culture media were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The UniProt Felis catus database was used to identify the standard proteome. No significant differences were found in the cleavage, morula, or blastocyst rates between the ZI and ZF groups (p > 0.05). Proteomic analysis revealed 22 upregulated and 20 downregulated proteins in the ZF blastocysts. Furthermore, 14 proteins involved in embryo development and implantation were present exclusively in the culture medium of the ZI blastocysts. In conclusion, embryo culture without the zona pellucida did not affect in vitro development, but altered the protein expression profile and release of domestic cat blastocysts.


Assuntos
Blastocisto , Proteômica , Zona Pelúcida , Animais , Blastocisto/metabolismo , Zona Pelúcida/metabolismo , Gatos , Proteômica/métodos , Técnicas de Cultura Embrionária , Secretoma/metabolismo , Feminino , Fertilização in vitro , Proteoma/metabolismo , Desenvolvimento Embrionário , Espectrometria de Massas em Tandem , Cromatografia Líquida
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396750

RESUMO

Acute-on-chronic liver failure (ACLF) is a syndrome marked by sudden liver function decline and multiorgan failure, predominantly acute kidney injury (AKY), in patients with chronic liver disease. Unregulated inflammation is a hallmark of ACLF; however, the key drivers of ACLF are not fully understood. This study explores the therapeutic properties of human mesenchymal stem cell (MSC) secretome, particularly focusing on its enhanced anti-inflammatory and pro-regenerative properties after the in vitro preconditioning of the cells. We evaluated the efficacy of the systemic administration of MSC secretome in preventing liver failure and AKI in a rat ACLF model where chronic liver disease was induced using by the administration of porcine serum, followed by D-galN/LPS administration to induce acute failure. After ACLF induction, animals were treated with saline (ACLF group) or MSC-derived secretome (ACLF-secretome group). The study revealed that MSC-secretome administration strongly reduced liver histological damage in the ACLF group, which was correlated with higher hepatocyte proliferation, increased hepatic and systemic anti-inflammatory molecule levels, and reduced neutrophil and macrophage infiltration. Additionally, renal examination revealed that MSC-secretome treatment mitigated tubular injuries, reduced apoptosis, and downregulated injury markers. These improvements were linked to increased survival rates in the ACLF-secretome group, endorsing MSC secretomes as a promising therapy for multiorgan failure in ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Humanos , Ratos , Animais , Suínos , Insuficiência Hepática Crônica Agudizada/terapia , Secretoma , Células-Tronco , Anti-Inflamatórios
4.
Histochem Cell Biol ; 161(5): 409-421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402366

RESUMO

Cancer is understood as a multifactorial disease that involve multiple cell types and phenotypes in the tumor microenvironment (TME). The components of the TME can interact directly or via soluble factors (cytokines, chemokines, growth factors, extracellular vesicles, etc.). Among the cells composing the TME, mesenchymal stem cells (MSCs) appear as a population with debated properties since it has been seen that they can both promote or attenuate tumor progression. For various authors, the main mechanism of interaction of MSCs is through their secretome, the set of molecules secreted into the extracellular milieu, recruiting, and influencing the behavior of other cells in inflammatory environments where they normally reside, such as wounds and tumors. Natural products have been studied as possible cancer treatments, appealing to synergisms between the molecules in their composition; thus, extracts obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been produced and studied previously on different models, showing promising results. The effect of plant extracts on the MSC secretome has been poorly studied, especially in the context of the TME. Here, we studied the effect of Anamu-SC and P2Et extracts in the human adipose-derived MSC (hAMSC)-tumor cell interaction as a TME model. We also investigated the influence of the hAMSC secretome, in combination with these natural products, on tumor cell hallmarks such as viability, clonogenicity, and migration. In addition, hAMSC gene expression and protein synthesis were evaluated for some key factors in tumor progression in the presence of the extracts by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Multiplex, respectively. It was found that the presence of the hAMSC secretome did not affect the cytotoxic or clonogenicity-reducing activities of the natural extracts on cancer cells, and even this secretome can inhibit the migration of these tumor cells, in addition to the fact that the profile of molecules can be modified by natural products. Overall, our findings demonstrate that hAMSC secretome participation in TME interactions can favor the antitumor activities of natural products.


Assuntos
Células-Tronco Mesenquimais , Extratos Vegetais , Secretoma , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Secretoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
5.
CNS Neurosci Ther ; 30(4): e14517, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37927136

RESUMO

BACKGROUND: Morphine is an opiate commonly used in the treatment of moderate to severe pain. However, prolonged administration can lead to physical dependence and strong withdrawal symptoms upon cessation of morphine use. These symptoms can include anxiety, irritability, increased heart rate, and muscle cramps, which strongly promote morphine use relapse. The morphine-induced increases in neuroinflammation, brain oxidative stress, and alteration of glutamate levels in the hippocampus and nucleus accumbens have been associated with morphine dependence and a higher severity of withdrawal symptoms. Due to its rich content in potent anti-inflammatory and antioxidant factors, secretome derived from human mesenchymal stem cells (hMSCs) is proposed as a preclinical therapeutic tool for the treatment of this complex neurological condition associated with neuroinflammation and brain oxidative stress. METHODS: Two animal models of morphine dependence were used to evaluate the therapeutic efficacy of hMSC-derived secretome in reducing morphine withdrawal signs. In the first model, rats were implanted subcutaneously with mini-pumps which released morphine at a concentration of 10 mg/kg/day for seven days. Three days after pump implantation, animals were treated with a simultaneous intravenous and intranasal administration of hMSC-derived secretome or vehicle, and withdrawal signs were precipitated on day seven by i.p. naloxone administration. In this model, brain alterations associated with withdrawal were also analyzed before withdrawal precipitation. In the second animal model, rats voluntarily consuming morphine for three weeks were intravenously and intranasally treated with hMSC-derived secretome or vehicle, and withdrawal signs were induced by morphine deprivation. RESULTS: In both animal models secretome administration induced a significant reduction of withdrawal signs, as shown by a reduction in a combined withdrawal score. Secretome administration also promoted a reduction in morphine-induced neuroinflammation in the hippocampus and nucleus accumbens, while no changes were observed in extracellular glutamate levels in the nucleus accumbens. CONCLUSION: Data presented from two animal models of morphine dependence suggest that administration of secretome derived from hMSCs reduces the development of opioid withdrawal signs, which correlates with a reduction in neuroinflammation in the hippocampus and nucleus accumbens.


Assuntos
Células-Tronco Mesenquimais , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Humanos , Ratos , Animais , Morfina , Dependência de Morfina/tratamento farmacológico , Administração Intranasal , Doenças Neuroinflamatórias , Secretoma , Naloxona/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Glutamatos , Antagonistas de Entorpecentes/farmacologia
6.
J Proteomics ; 290: 105023, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37838095

RESUMO

The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.


Assuntos
Búfalos , Proteômica , Animais , Feminino , Gravidez , Antioxidantes/metabolismo , Búfalos/metabolismo , Endométrio/metabolismo , Secretoma , Útero/metabolismo
7.
Wound Repair Regen ; 31(6): 827-841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38038971

RESUMO

Therapies for wound healing using the secretome and extracellular vesicles (EVs) of mesenchymal stem/stromal cells have been shown to be successful in preclinical studies. This study aimed to characterise the protein content of the secretome from stem cells from human exfoliated deciduous teeth (SHED) and analyse the in vitro effects of SHED-conditioned medium (SHED-CM) and SHED extracellular vesicles (SHED-EVs) on keratinocytes. EVs were isolated and characterised. The keratinocyte viability and migration of cells treated with SHED-EVs and conditioned medium (CM) were evaluated. An HaCaT apoptosis model induced by H2 O2 in vitro was performed with H2 O2 followed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live/dead assays. Finally, the expression of vascular endothelial growth factor (VEGF) in keratinocytes treated with secretome and EVs was evaluated by immunofluorescence staining and confirmed with RT-qPCR. SHED-EVs revealed a cup-shaped morphology with expression of the classical markers for exosomes CD9 and CD63, and a diameter of 181 ± 87 nm. The internalisation of EVs by HaCaT cells was confirmed by fluorescence microscopy. Proteomic analysis identified that SHED-CM is enriched with proteins related to stress response and development, including cytokines (CXCL8, IL-6, CSF1, CCL2) and growth factors (IGF2, MYDGF, PDGF). The results also indicated that 50% CM and 0.4-0.6 µg/mL EVs were similarly efficient for improving keratinocyte viability, migration, and attenuation of H2 O2 -induced cytotoxicity. Additionally, expression of VEGF on keratinocytes increased when treated with SHED secretome and EVs. Furthermore, VEGF gene expression in keratinocytes increased significantly when treated with SHED secretome and EVs. Both SHED-CM and SHED-EVs may therefore be promising therapeutic tools for accelerating re-epithelialization in wound healing.


Assuntos
Vesículas Extracelulares , Cicatrização , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Proteômica , Secretoma , Células-Tronco/metabolismo , Queratinócitos , Vesículas Extracelulares/metabolismo , Dente Decíduo
8.
J Cell Physiol ; 238(11): 2625-2637, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37661654

RESUMO

The secretome present in the conditioned medium (CM) of mesenchymal stem cells (MSCs) is a promising tool to be used in therapies to promote bone regeneration. Considering the high osteogenic potential of the bone morphogenetic protein 9 (BMP-9), we hypothesized that the secretome of MSCs overexpressing BMP-9 (MSCsBMP-9 ) enhances the osteoblast differentiation of MSCs and the bone formation in calvarial defects. CM of either MSCsBMP-9 (CM-MSCsBMP-9 ) or MSCs without BMP-9 overexpression (CM-MSCsVPR ) were obtained at different periods. As the CM-MSCsBMP-9 generated after 1 h presented the highest BMP-9 concentration, CM-MSCsBMP-9 and CM-MSCsVPR were collected at this time point and used to culture MSCs and to be injected into mouse calvarial defects. The CM-MSCsBMP-9 enhanced the osteoblast differentiation of MSC by upregulating RUNX2, alkaline phosphatase (ALP) and osteopontin protein expression, and ALP activity, compared with CM-MSCsVPR . The CM-MSCsBMP-9 also enhanced the bone repair of mouse calvarial defects, increasing bone volume, bone volume/total volume, bone surface, and trabecular number compared with untreated defects and defects treated with CM-MSCsVPR or even with MSCsBMP-9 themselves. In conclusion, the potential of the MSCBMP-9 -secretome to induce osteoblast differentiation and bone formation shed lights on novel cell-free-based therapies to promote bone regeneration of challenging defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Células Cultivadas , Fator 2 de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Secretoma
9.
Fungal Biol ; 127(7-8): 1136-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495304

RESUMO

Although Metarhizium anisopliae is one of the most studied fungal biocontrol agents, its infection mechanism is far from being completely understood. Using multidimensional protein identification technology (MudPIT), we evaluated the differential secretome of M. anisopliae E6 induced by the host Rhipicephalus microplus cuticle. The proteomic result showed changes in the expression of 194 proteins after exposure to host cuticle, such as proteins involved in adhesion, penetration, stress and fungal defense. Further, we performed a comparative genomic distribution of differentially expressed proteins of the M. anisopliae secretome against another arthropod pathogen, using the Beauveria bassiana ARSEF2860 protein repertory. Among 47 analyzed protein families, thirty were overexpressed in the M. anisopliae E6 predicted genome compared to B. bassiana. An in vivo toxicity assay using a Galleria mellonella model confirmed that the M. anisopliae E6 secretome was more toxic in cattle tick infections compared to other secretomes, including B. bassiana with cattle ticks and M. anisopliae E6 with the insect Dysdereus peruvianus, which our proteomic results had also suggested. These results help explain molecular aspects associated with host infection specificity due to genetic differences and gene expression control at the protein level in arthropod-pathogenic fungi.


Assuntos
Beauveria , Metarhizium , Rhipicephalus , Animais , Metarhizium/genética , Secretoma , Especificidade de Hospedeiro , Proteômica , Controle Biológico de Vetores/métodos , Rhipicephalus/genética , Rhipicephalus/microbiologia
10.
Proteomics ; 23(23-24): e2200243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37474490

RESUMO

Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of "signatures" of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Secretoma , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Comunicação Celular , Adaptação Fisiológica , Microambiente Tumoral
11.
Fungal Biol ; 127(5): 1043-1052, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142363

RESUMO

Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.


Assuntos
Glycine max , Proteômica , Glycine max/microbiologia , Secretoma , Folhas de Planta , Fatores de Virulência/genética , Doenças das Plantas/microbiologia
12.
Biochimie ; 211: 78-86, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36931338

RESUMO

This study aimed to describe the secretome of mesenchymal stem cells derived from feline adipose tissue (AD-MSCs) and compare the effects of different culture conditions on AD-MSC proteomics using a shotgun approach. Adipose tissue was collected from 5 female cats and prepared to culture. Conditioned media was collected at third passage, in which the cells were cultured under 4 conditions, normoxia with fetal bovine serum (N + FBS), hypoxia with FBS (H + FBS), normoxia without FBS (N - FBS), and hypoxia without FBS (H - FBS). Then, the secretome was concentrated and prepared for proteomic approaches. Secretomes cultured with FBS-free medium had more than twice identified proteins in comparison with the secretomes cultured with FBS. In contrast, hypoxic conditions did not increase protein amount and affected only a small proteome fraction. Relevant proteins were related to the extracellular matrix promoting environmental modulation, influencing cell signaling pathways, and providing a suitable environment for cell proliferation and maintenance. Moreover, other proteins were also related to cell adhesion, migration and morphogenesis. Culture conditions can influence protein abundance in AD-MSC secretome, and can give also more specificity to cell and cell-free treatments for different diseases.


Assuntos
Células-Tronco Mesenquimais , Secretoma , Gatos , Animais , Feminino , Proteômica , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Hipóxia/metabolismo , Proliferação de Células , Células Cultivadas , Diferenciação Celular
13.
Cells ; 12(4)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36831304

RESUMO

Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.


Assuntos
Amiodarona , Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Tamoxifeno , Amiodarona/metabolismo , Secretoma , Camundongos Endogâmicos C57BL , Células-Tronco Mesenquimais/metabolismo , Fígado Gorduroso/metabolismo , Fatores Imunológicos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
14.
Clin Transl Oncol ; 25(7): 2056-2068, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808392

RESUMO

Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Neoplasias , Humanos , Secretoma , Exossomos/metabolismo , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
15.
Clin Transl Oncol ; 25(6): 1702-1709, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36617361

RESUMO

BACKGROUND: Cancer refers to a disease resulting from the uncontrolled division and growth of abnormal cells. Among different cancer types, breast cancer is considered as one of the most commonly diagnosed cancers. Herein, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) secretome on breast cancer cells (MDA-MB-231) through analyzing cell cycle progression. METHODS: We employed a co-culture system using 6-well Transwell plates and after 72 h, the cell cycle progression was evaluated in the hAMSCs-treated MDA-MB-231 cells through analyzing the expressions of RB, CDK4/6, cyclin D, CDK2, cyclin E, p16/INK4a, p21/WAF1/CIP1, and p27/KIP1 using quantitative real-time PCR (qRT-PCR) and western blot method. Cell proliferation, apoptosis, and cell cycle progression were checked using an MTT assay, DAPI staining, and flow cytometry. RESULTS: Our results indicated that elevation of RB, p21/WAF1/CIP1, and p27/KIP1 and suppression of RB hyperphosphorylation, p16/INK4a, cyclin E, cyclin D1, CDK2, and CDK4/6 may contribute to inhibiting the proliferation of hAMSCs-treated MDA-MB-231 cells through cell cycle arrest in G1/S phase followed by apoptosis. CONCLUSION: hAMSCs secretome may be an effective approach on breast cancer therapy through the inhibition of cell cycle progression.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Humanos , Feminino , Neoplasias da Mama/metabolismo , Ciclina E/metabolismo , Fase S , Secretoma , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Ciclo Celular
16.
Clin Transl Oncol ; 25(5): 1145-1155, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36525229

RESUMO

Secretome analysis has gained popularity recently as a very well-designed proteomic approach that is being used to study various interactions and their effects on cellular activity. This analysis is especially helpful while studying the effects of the cells on their microenvironment, paracrine and autocrine processes, their therapeutic purposes, and as a new diagnostic perspective. Cancer is a condition rather than a specific type of disease and is still yet to be fully understood. Cancer secretome is a fairly new concept that is being implemented to examine the interactions taking place in the tumor microenvironment and can help to understand the phenomena like induction of tumorigenesis, stimulation of immune cells, etc. The secretome analysis helps to gain a different perspective on the existing knowledge on cancer and its effects. The recent advances in secretome studies are directed toward secreted components as drug targets, biomarkers, and companion tools for diagnostic and prognostic purposes in cancer. This review aims to find the interactors in different types of cancer and understand the existing unstructured secretome data and its application in prognosis, diagnosis, and in biomarker study.


Assuntos
Neoplasias , Proteômica , Humanos , Secretoma , Neoplasias/diagnóstico , Biomarcadores , Microambiente Tumoral
17.
Clin Transl Oncol ; 25(5): 1389-1401, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36520383

RESUMO

BACKGROUND: Adipose tissue is a major component of breast stroma. This study focused on delineating the effects of adipose stem cells (ASCs) derived from breast of healthy women and cancer patients with normal or tumor breast cells. METHODS: The ASCs were induced to differentiate into adipocytes, and the subsequent adipocyte conditioned media (ACM) were evaluated for their fatty acid profile, adipokine secretion and influence on proliferation, migration and invasion on tumoral (MCF-7 and SUM159) and normal (HMEC) human breast cell lines. RESULTS: An enrichment of arachidonic acid was observed in ACM from tumor tissues. Adipose tissues from tumor free secrete twice as much leptin than those from proximal or distal to the tumor. All ACMs display proliferative activity and favor invasiveness of SUM159 cells compared to MCF-7 and HMEC. All ACMs induced lipid droplets accumulation in MCF-7 cells and increased CD36 expression in tumor cells. CONCLUSION: We conclude that among secreted factors analyzed, only arachidonic acid and leptin levels did discriminate ASCs from tumor-bearing and tumor-free breasts emphasizing the importance that other cell types could contribute to the adipose tissue secretome in a tumor context.


Assuntos
Neoplasias da Mama , Leptina , Feminino , Humanos , Leptina/metabolismo , Leptina/farmacologia , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Neoplasias da Mama/patologia , Secretoma , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Células MCF-7 , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Linhagem Celular Tumoral
18.
J Proteomics ; 272: 104789, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36464092

RESUMO

Trypanosoma evansi is a parasite that is phylogenetically close to Trypanosoma brucei and is the causative agent of a disease known as surra. Surra is responsible for a high mortality rate in livestock and large economic losses in the Americas, Africa, and Asia. This work aimed to analyze in vitro secreted proteins from T. evansi and identify potential treatment and diagnostic biomarkers for surra diagnosis. Two groups were used. In one group the parasites were purified using a DEAE-Cellulose column and maintained in a secretion medium while in the other group the parasites were not purified. Each group was further divided to be maintained at either 37 °C or 27 °C. We identified 246 proteins through mass spectrometry and found that the temperature appears to modulate protein secretion. We found minimal variations in the protein pools from pure and non-purified sets. We observed an emphasis on proteins associated to vesicles, glycolysis, and cellular homeostasis through the enrichment of GO. Also, we found that most secretome proteins share homologous proteins with T. b. brucei, T. b. gambiense, T. vivax, T. equiperdum, and T. b. rhodesiense secretome but unique T. evansi epitopes with potential biomarkers for surra diagnosis were detected. SIGNIFICANCE: Trypanosoma evansi is a parasite of African origin that is phylogenetically close to Trypanosoma brucei. As with other trypanosomatids and blood parasites, its infection causes non-pathognomonic symptoms, which makes its diagnosis difficult. One great problem is the fact that no diagnostic test differentiates between Trypanosoma equiperdum and T. evansi, which is a problem in South America and Asia, and Africa. Thus, it is urgent to study the biochemistry of the parasite to discover proteins that can be used for differential diagnosis or be possible therapeutic targets. In addition, the study of the secretome can point out proteins that are used by the parasite in its interactions with the host, helping to understand the progression of the disease.


Assuntos
Trypanosoma , Tripanossomíase , Animais , Secretoma , Tripanossomíase/diagnóstico , Gado , América do Sul
19.
IUBMB Life ; 75(3): 196-206, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590780

RESUMO

The secretome of different cell types has been applied on in vitro and in vivo assays, indicating considerable therapeutic potential. However, the choice of the ideal cell type and culture conditions for obtaining the best set of soluble factors, as well as the assays to assess specific effects, remain subjects of vigorous debate. In this study, we used mass spectrometry to characterize the secretomes of ventricle derived-cardiac resident stromal cells (vCRSC) and human dermal fibroblasts (HDFs) and evaluate them in an effort to understand the niche specificity of biological responses toward different cellular behaviors, such as cell proliferation, adhesion, migration, and differentiation. It was interesting to note that the HDF and vCRSC secretomes were both able to induce proliferation and cardiac differentiation of H9c2 cells, as well as to increase the adhesion activity of H9c2 cells and human umbilical vein endothelial cells. Analysis of the secretome composition showed that the vCRSCs derived from different donors secreted a similar set of proteins. Despite the differences, almost half of the proteins identified in conditioned medium were common to both HDF and vCRSC. Consequently, a high number of common biological processes were identified in the secretomes of the two cell types, which could help to explain the similar results observed in the in vitro assays. We show that soluble factors secreted by both HDF and vCRSC are able to promote proliferation and differentiation of cardiomyoblasts in vitro. Our study indicates the possible use of vCRSC or HDF secretomes in acellular therapies for regenerative medicine.


Assuntos
Secretoma , Células Estromais , Humanos , Pele/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fibroblastos/metabolismo
20.
Cells Tissues Organs ; 212(6): 567-582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35871510

RESUMO

Non-healing skin wounds remain a challenge in the healthcare system. In this sense, it is suggested that the secretome of mesenchymal stromal cells (MSCs) can be effective as a therapeutic strategy for regenerative medicine. Therefore, this systematic review aimed to determine the effects of treatment with a secretome derived from MSCs on the healing of skin wounds in a preclinical model of rodents (mice and rats). Studies were systematically retrieved from 6 databases and gray literature that provided 1,172 records, of which 25 met the inclusion criteria for qualitative analysis. Results revealed substantial heterogeneity among studies concerning experimental designs and methodologies, resulting in a high risk of bias. Together, the selected studies reported that treatment improved wound healing by (1) accelerating wound closure and improving skin repair quality; (2) reducing inflammation by decreasing the number of cells and inflammatory cytokines, accompanied by polarization of the M2 macrophage; (3) complete re-epithelialization and epidermal reorganization; (4) neovascularization promoted by proliferation of endothelial cells (CD34+) and increased levels of pro-angiogenic mediators; (5) better scar quality promoted by increased expression of collagen types I and III, as well as improved deposition and remodeling of collagen fibers. In conclusion, despite the need for alignment of methodological protocols and transparent reports in future studies, results show that the secretome of MSCs from different tissue sources corresponds to a promising tool of regenerative medicine for the treatment of skin wounds.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Células Endoteliais , Secretoma , Pele/lesões , Cicatrização , Colágeno , Transplante de Células-Tronco Mesenquimais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA