Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.603
Filtrar
2.
Braz. j. biol ; 84: e257739, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355883

RESUMO

Abstract Under salt stress conditions, plant growth is reduced due to osmotic, nutritional and oxidative imbalance. However, salicylic acid acts in the mitigation of this abiotic stress by promoting an increase in growth, photosynthesis, nitrogen metabolism, synthesis of osmoregulators and antioxidant enzymes. In this context, the objective was to evaluate the effect of salicylic acid doses on the growth and physiological changes of eggplant seedlings under salt stress. The experiment was conducted in a greenhouse, where the treatments were distributed in randomized blocks using a central composite matrix Box with five levels of electrical conductivity of irrigation water (CEw) (0.50; 1.08; 2.50; 3.92 and 4.50 dS m-1), associated with five doses of salicylic acid (SA) (0.00; 0.22; 0.75; 1.28 and 1.50 mM), with four repetitions and each plot composed of three plants. At 40 days after sowing, plant height, stem diameter, number of leaves, leaf area, electrolyte leakage, relative water content, and total dry mass were determined. ECw and SA application influenced the growth and physiological changes of eggplant seedlings. Increasing the ECw reduced growth in the absence of SA. Membrane damage with the use of SA remained stable up to 3.9 dS m-1 of ECw. The relative water content independent of the CEw increased with 1.0 mM of SA. The use of SA at the concentration of 1.0 mM mitigated the deleterious effect of salinity on seedling growth up to 2.50 dS m-1 of ECw.


Resumo Em condições de estresse salino, o crescimento das plantas é reduzido, em virtude, do desequilíbrio osmótico, nutricional e oxidativo. Contudo, o ácido salicílico atua na mitigação desse estresse abiótico por promover incremento no crescimento, fotossíntese, metabolismo do nitrogênio, síntese de osmorreguladores e enzimas antioxidantes. Nesse contexto, objetivou-se avaliar o efeito de doses de ácido salicílico sobre o crescimento e alterações fisiológicas de mudas de berinjela sob estresse salino. O experimento foi conduzido em casa de vegetação, onde os tratamentos foram distribuídos em blocos ao acaso utilizando uma matriz composta central Box com cinco níveis de condutividade elétrica da água de irrigação (CEa) (0,50; 1,08; 2,50; 3,92 e 4,50 dS m-1), associada a cinco doses de ácido salicílico (AS) (0,00; 0,22; 0,75; 1,28 e 1,50 mM), com quatro repetições e cada parcela composta por três plantas. Aos 40 dias após a semeadura, foram determinados a altura da planta, diâmetro do caule, número de folhas, área foliar, vazamento de eletrólito, teor relativo de água e massa seca total. A CEa e a aplicação de AS influenciaram no crescimento e nas alterações fisiológicas das mudas de berinjela. O aumento da CEa reduziu o crescimento na ausência de AS. O dano de membrana com o uso de AS manteve-se estável até 3,9 dS m-1 de CEa. O conteúdo relativo de água independentemente da CEa aumentou com 1 mM de SA. O uso de AS na concentração de 1 mM mitigou o efeito deletério da salinidade no crescimento das mudas até 2,50 dS m-1 de CEa.


Assuntos
Ácido Salicílico/farmacologia , Solanum melongena/metabolismo , Fotossíntese , Estresse Fisiológico , Folhas de Planta/metabolismo , Plântula , Salinidade , Tolerância ao Sal , Antioxidantes/metabolismo
3.
Braz. j. biol ; 84: e257314, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355908

RESUMO

Abstract Melon production in the Brazilian semi-arid region is subject to the use of marginal waters with high salinity. However, the use of regulators and bioactivators in seed treatment can mitigate the harmful effects of salts in irrigation water. In this context, the objective was to evaluate the effect of pre-germination treatments with plant regulators and bioactivator in melon seeds for the production of seedlings irrigated with biosaline water from fish farming effluent. For this, two trials with the Goldex and Grand Prix hybrids were carried out separately. A completely randomized design was used in a 4 × 3 factorial scheme (pre-germination treatments × water dilutions). In addition to the control, the seeds were treated with salicylic and gibberellic acids and thiamethoxam. The waters used for irrigation were local-supply water, fish farming effluent (biosaline water) and these diluted to 50%. Physiological and biochemical analyses were performed for fourteen days. Biosaline water (5.0 dS m-1) did not affect the emergence of Goldex melon seedlings, but compromised the establishment of the Grand Prix cultivar. Seed pre-treatments with salicylic and gibberellic acids attenuate the effects of water salinity and promote growth modulations, resulting in more vigorous melon seedlings.


Resumo A produção de meloeiro no semiárido brasileiro está sujeita a utilização de águas marginais com salinidade elevada. Entretanto, a utilização de reguladores e bioativadores no tratamento de sementes podem mitigar os efeitos nocivos dos sais na água de irrigação. Nesse sentido, objetivou-se avaliar o efeito de tratamentos pré-germinativos com fitorreguladores e bioativador em sementes de melão para a produção de mudas irrigadas com água biossalina de efluente de piscicultura. Para isso, dois ensaios com os híbridos Goldex e Grand Prix foram realizados separadamente. Utilizou-se delineamento inteiramente casualizado em esquema fatorial 4 × 3 (tratamentos pré-germinativos × diluições de água). Além do controle, as sementes foram tratadas com os ácidos salicílico e giberélico, e tiametoxam. As águas utilizadas para irrigação foram a de abastecimento local, efluente de piscicultura (água biossalina) e estas diluídas a 50%. Durante quatorze dias foram realizadas as análises fisiológicas e bioquímicas. A água biossalina (5,0 dS m-1) não afetou a emergência de plântulas de meloeiro Goldex, mas prejudicou o estabelecimento da cultivar Grand Prix. Os pré-tratamentos de sementes com os ácidos salicílico e giberélico atenuam os efeitos da salinidade da água e promovem modulações no crescimento, proporcionando mudas de meloeiro mais vigorosas.


Assuntos
Germinação , Cucurbitaceae , Sementes , Água , Plântula
4.
Braz. j. biol ; 84: e259137, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364510

RESUMO

The edge effect has impacts on seed and seedling survival due to modifications in biotic and abiotic factors. Often, large-seeded tree species lost seed vectors in the forest edge due to the rarity or absence of large frugivores at this habitat type. In this study, I compared the seedling abundance and distribution of the palm Syagrus flexuosa between edges and interiors of three large Cerrado remnants. In every remnant, the number of seedlings around parent palms in the edge was smaller than around palm individuals located in the Cerrado interior. Moreover, the distribution of seedlings around parent palms differed between edges and interiors. In the edges, most seedlings were found under parent crowns, while in the interiors, the contrary occurred. The high concentration of seedlings under parent palms suggests a decrease of seed dispersal at the edges. Because S. flexuosa is a widely distributed palm that serves as an important resource for several animals along Cerrado habitats, changes on the regeneration process of this palm due to edge effects can further impact frugivore populations. Therefore, the decline of seedling establishment along forest edges implies changes in the Cerrado regeneration dynamics, which may compromise the persistence of ecological processes and animal communities.


O efeito de borda tem impactos severos na sobrevivência de sementes e plântulas devido a modificações dos fatores bióticos e abióticos. Frequentemente, espécies arbóreas com sementes grandes perdem seus dispersores na borda da floresta devido à raridade ou ausência de grandes frugívoros neste tipo de habitat. Neste estudo, comparei a abundância e distribuição de plântulas de S. flexuosa entre bordas e interiores de três grandes remanescentes de Cerrado. Em cada remanescente, o número de plântulas ao redor das palmeiras-mãe, na borda, era menor do que ao redor dos indivíduos no interior do Cerrado. Nas bordas, a maioria das plântulas foi encontrada junto às plantas mãe, enquanto no interior ocorreu o contrário. A alta concentração de plântulas sob as plantas adultas sugere diminuição da dispersão de sementes nas bordas. Como S. flexuosa é uma palmeira amplamente distribuída que serve como um recurso importante para vários animais nos habitats do Cerrado, mudanças no processo de regeneração dessa palmeira devido aos efeitos de borda podem impactar ainda mais as populações de frugívoros. Portanto, o declínio do estabelecimento de plântulas ao longo das bordas do Cerrado implica em mudanças na dinâmica de regeneração do Cerrado, o que pode comprometer a persistência de processos ecológicos e comunidades animais.


Assuntos
Ecossistema , Arecaceae , Plântula , Dispersão de Sementes
5.
Zhongguo Zhong Yao Za Zhi ; 48(1): 39-44, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725256

RESUMO

Wilt disease is a major disease of cultivated Salvia miltiorrhiza, which is caused by Fusarium oxysporum. Since the infection process of F. oxysporum in plants is affected by environment factors, this study was conducted to reveal the relationship between disease severity and concentration of the pathogen in plants in the infection process of F. oxysporum in seedlings of S. miltiorrhiza by pot experiments and to reveal the effects of temperature and humidity on the infection process. The results showed that, after inoculation of S. miltiorrhiza seedlings with F. oxysporum, the pathogen in different parts was detected at different time, and it was first detected in substrates. With the continuous propagation of the pathogen(4-5 d), it gradually infected the roots and stems of the seedlings, and the plants had yellowing leaves and withering. The number of the pathogen reached the maximum in each part after 7-8 d, and then gradually decreased in the later stage of the disease. The concentration of the pathogen in substrates, roots and stems of S. miltiorrhiza showed a trend of decreasing after increasing with the aggravation of the disease and reached the maximum in the samples of moderate morbidity, while the concentration in the samples of severe morbidity decreased. In addition, the infection of F. oxysporum in seedlings of S. miltiorrhiza was affected by temperature and humidity. The suitable temperature was 25-30 ℃ and the suitable humidity was 80%-90%. This study could provide guidance for the experiments on pathogenicity of F. oxysporum, screening of biocontrol bacteria and controlling of wilt.


Assuntos
Fusarium , Salvia miltiorrhiza , Plântula/microbiologia , Temperatura , Umidade
6.
J Nanobiotechnology ; 21(1): 23, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670406

RESUMO

BACKGROUND: There is a serious global problem of salinization of arable land, causing large reduction in world food production. Use of plant hormones is an effective way to reduce damage caused to crops and salt stress. RESULTS: In this study, PEI-EDA was modified with AM-zein and grafted with plant hormone SA (AM-zein-SA) and used as a nano-pesticide carrier to load emamectin benzoate (EB). The use of AM-zein-SA as a nano-pesticide carrier could reduce the damage caused by salt stress to crops. The structure of AM-zein-SA was characterized by FTIR, UV, fluorescence, Raman, and 1H NMR spectroscopic techniques. AM-zein-SA could effectively improve the resistance of EB to ultraviolet radiations, resistance of cucumber to salt stress, and the absorption of EB by plants. The experimental results showed that AM-zein-SA could effectively improve the anti-UV property of EB by 0.88 fold. When treated with 120 mmol NaCl, the germination rate of cucumber seeds under salt stress increased by 0.93 fold in presence of 6.25 mg/L carrier concentration. The POD and SOD activities increased by 0.50 and 1.21 fold, whereas the content of MDA decreased by 0.23 fold. In conclusion, AM-zein-SA nano-pesticide carrier could be used to improve the salt resistance of crops and the adhesion of pesticides to leaves. CONCLUSION: AM-zein-SA, without undergoing any changes in its insecticidal activity, could simultaneously improve the salt stress resistance and salt stress germination rate of cucumber, reduce growth inhibition due to stress under high-concentration salt, and had a good effect on crops. In addition, EB@AM-zein-SA obviously improved the upward transmission rate of EB, as compared with EB. In this study, SA was grafted onto zein-based nano-pesticide carrier, which provided a green strategy to control plant diseases, insects, and pests while reducing salt stress on crops in saline-alkali soil.


Assuntos
Praguicidas , Zeína , Ácido Salicílico/farmacologia , Plântula , Praguicidas/farmacologia , Reguladores de Crescimento de Plantas
7.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675054

RESUMO

Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/genética , Gravitropismo/fisiologia , Plântula/genética , Brachypodium/genética , Meristema , Rotação , Estudo de Associação Genômica Ampla , Raízes de Plantas/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos
8.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675124

RESUMO

The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background.


Assuntos
Plântula , Triticum , Plântula/genética , Tetraploidia , Melhoramento Vegetal , Poaceae/genética , Tolerância ao Sal/genética , Cromossomos de Plantas/genética
9.
Plant Signal Behav ; 18(1): 2163349, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645912

RESUMO

Planting Elymus nutans artificial grassland to replace degraded Artemisia baimaensis grassland on the Qinghai Tibetan plateau (QTP) can effectively alleviate local grass-livestock imbalance. However, it is unknown whether the allelopathy of natural grassland plant A. baimaensis on E. nutans affects grassland establishment. Accordingly, we examined the effects of varying concentrations of aqueous extracts of A. baimaensis litter on the seed germination and early seedling growth of E. nutans, and the effects of A. baimaensis volatile organic compounds (VOCs) on the growth parameters and physiological characteristics of E. nutans. The results indicate that the aqueous extract inhibited the force, percentage, and index of germination of E. nutans and affected early seedling growth, particularly at high concentrations. Further, the VOCs significantly reduced the aboveground and root biomass of E. nutans and increased malondialdehyde concentrations. Additionally, these VOCs altered the antioxidant enzyme activities and increased the superoxide dismutase, peroxidase, ascorbic acid peroxidase, soluble sugar, and proline content but significantly decreased glutathione reductase levels. Our results indicate that the allelopathy of A. baimaensis significantly inhibited the germination and seedling growth of E. nutans . Thus, the leaching of A. baimaensis may produce allelochemicals in the soil that inhibit the germination of E. nutans seeds. Moreover, the VOCs of A. baimaensis may disrupt the growth process, resulting in a decrease in biomass and a disruption of the physiological metabolism of seedlings under field conditions.


Assuntos
Artemisia , Elymus , Elymus/metabolismo , Pradaria , Alelopatia , Plântula , Germinação , Plantas , Sementes , Peroxidases/metabolismo , Peroxidases/farmacologia
10.
J Vis Exp ; (191)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688570

RESUMO

Early-stage seedling grafting has become a popular tool in molecular genetics to study root-shoot relationships within plants. Grafting early-stage seedlings of the small model plant, Arabidopsis thaliana, is technically challenging and time consuming due to the size and fragility of its seedlings. A growing collection of published methods describe this technique with varying success rates, difficulty, and associated costs. This paper describes a simple procedure to make an in-house reusable grafting device using silicone elastomer mix, and how to use this device for seedling grafting. At the time of this publication, each reusable grafting device costs only $0.47 in consumable materials to produce. Using this method, beginners can have their first successfully grafted seedlings in less than 3 weeks from start to finish. This highly accessible procedure will allow plant molecular genetics labs to establish seedling grafting as a normal part of their experimental process. Due to the full control users have in the creation and design of these grafting devices, this technique could be easily adjusted for use in larger plants, such as tomato or tobacco, if desired.


Assuntos
Arabidopsis , Plântula , Análise Custo-Benefício , Arabidopsis/genética , Plantas , Raízes de Plantas
11.
Life Sci Space Res (Amst) ; 36: 138-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682823

RESUMO

Functional relationships between endogenous levels of plant hormones in the growth and development of shoots in etiolated Alaska pea and etiolated Golden Cross Bantam maize seedlings under different gravities were investigated in the "Auxin Transport" experiment aboard the International Space Station (ISS). Comprehensive analyses of 31 species of plant hormones of pea and maize seedlings grown under microgravity (µg) in space and 1 g conditions were conducted. Principal component analysis (PCA) and a multiple regression analysis with the dataset from the plant hormone analysis of the etiolated pea seedlings grown under µg and 1 g conditions in the presence and absence of 2,3,5-triiodobenzoic acid (TIBA) revealed endogenous levels of auxin correlated positively with bending and length of epicotyls. Endogenous cytokinins correlated negatively with them. These results suggest an interaction of auxin and cytokinins in automorphogenesis and growth inhibition of etiolated Alaska pea epicotyls grown under µg conditions in space. Less polar auxin transport with reduced endogenous levels of auxin increased endogenous levels of cytokinins, resulting in changing the growth direction of epicotyls and inhibiting growth. On the other hand, almost no close relationship between endogenous plant hormone levels and growth and development in etiolated maize seedlings grown was observed under µg conditions in space, as per Schulze et al. (1992). However, endogenous levels of IAA in the seedlings grown under µg conditions in space were significantly higher than those grown on Earth, similar to the cases of polar auxin transport already reported.


Assuntos
Voo Espacial , Ausência de Peso , Reguladores de Crescimento de Plantas , Plântula , Zea mays , Ervilhas , Ácidos Indolacéticos/farmacologia , Citocininas
12.
Theor Appl Genet ; 136(1): 1-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683081

RESUMO

KEY MESSAGE: Fifteen and eleven loci, with most loci being novel, were identified to associate with seedling and adult resistances, respectively, to the durum-specific races of leaf rust pathogen in cultivated emmer. Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Triticum/genética , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Doenças das Plantas/genética , Plântula/genética
13.
Sci Rep ; 13(1): 1209, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681696

RESUMO

Arizona Cypress is one of the drought-resistant, aromatic, and aesthetically pleasing trees having several pharmacological uses. Certain microorganisms contribute to the secondary metabolism and synthesis of bioactive compounds in aromatic and medicinal plants. This study aimed to determine the photosynthetic pigments, total phenolic content, antioxidant capacity, and essential oil composition of Arizona cypress under two irrigation regimes and microbial inoculations. We established a factorial experiment with three mycorrhizae inoculations (Rhizophagus irregularis, Funneliformis mosseae, and a mixture of R. irregularis and F. mosseae), a rhizobacterium inoculation (Pseudomonas fluorescens), and two irrigation regimes (well-watered and water stress). Under the water stress regime, seedlings inoculated with F. mosseae (0.46%) and non-inoculated control plants (0.29%) had the highest and lowest essential oil contents, respectively. GC-MS analysis revealed that limonen, a-pinene, terpinen-4-ol, and umbellulone were the most abundant compounds in the seedlings and treatments under study. The water stress regime had a significant and dominant effect on essential oil and antioxidant capacity, whereas seedling growth and photosynthetic pigments tended to decrease under stress conditions. However, co-inoculation of seedlings with mycorrhizae and the bacterium resulted in an increase in phenolic compounds and carotenoids. Under conditions of water stress and mycorrhizal symbiosis, the results of the current study may help increase the level of valuable compounds in Arizona cypress for further pharmaceutical applications.


Assuntos
Cupressus , Micorrizas , Óleos Voláteis , Raízes de Plantas/microbiologia , Cupressus/metabolismo , Desidratação , Antioxidantes/metabolismo , Óleos Voláteis/farmacologia , Micorrizas/fisiologia , Plântula , Secas
14.
Sci Rep ; 13(1): 1230, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681705

RESUMO

Adopting a Si supply strategy can amplify the sugarcane response. Thus, this study aimed to verify whether Si supply in the pre-sprouted seedling (PSS) formation phase would have an effect after field transplanting similar to Si supply only in the field phase (via foliar spraying or fertigation). Furthermore, this study aimed to verify whether Si supply in the PSS formation phase associated with Si fertigation after transplanting can potentiate or amplify Si benefits. Two experiments were conducted. In experiment I, pre-sprouted seedlings were grown in a nursery without Si (Control) and with Si. Experiment II was conducted in the field on Eutrustox soil with the following treatments: no Si supply (Control); Si supplied during the PSS formation phase; Si supplied through foliar spraying in the field; Si supplied through fertigation in the field; Si supplied in the PSS formation phase and during field development. Silicon used in both crop phases benefited sugarcane by increasing photosynthetic pigment content and the antioxidative defense system. The innovation of Si management to be supplied via fertigation integrated with both crop phases (PSS and in the field) optimizes the element's use by increasing the crop's productivity and sustainability.


Assuntos
Saccharum , Silício , Plântula , Antioxidantes , Grão Comestível
15.
Plant Signal Behav ; 18(1): 2163338, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682345

RESUMO

Ammonia (NH3), as an intermediate product of nitrogen metabolism, is recognized as a novel gasotransmitter (namely gaseous signaling molecule), its signaling role being revealed in plants. NH3 exists in two different chemical forms, namely the weak base (free molecule: NH3) and the weak acid (ammonium: NH4+), which are generally in equilibrium with each other in plants. However, the effect of NH3 on seed germination, seedling growth, and thermotolerance acquirement in maize remains unclear. Here, maize seeds were imbibed in the different concentrations of NH3·H2O (NH3 donor), and then germinated and calculated seed germination rate at the various time points. Also, the 60-h-old seedlings were irrigated in the different concentrations of NH3·H2O, and then subjected to heat stress and counted survival rate. The data implied that the appropriate concentrations (6, 9, and 12 mM) of NH3·H2O accelerated seed germination as well as increased seedling height and root length compared with the control without NH3 treatment. Also, the suitable concentrations (2 and 4 mM) of NH3·H2O improved tissue vitality, relieved an increase in malondialdehyde content, and enhanced survival rate of maize seedlings under heat stress compared with the control. These results firstly suggest that NH3 could accelerate seed germination, seedling growth, and thermotolerance acquirement in maize.


Assuntos
Gasotransmissores , Termotolerância , Plântula , Germinação , Gasotransmissores/farmacologia , Zea mays , Amônia/farmacologia , Sementes
16.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688764

RESUMO

The aim of this study was to develop an efficient bioinoculant for amelioration of adverse effects from chilling stress (10°C), which are frequently occurred during rice seedling stage. Seed germination bioassay under chilling condition with rice (Oryza sativa L.) cv. Tainan 11 was performed to screen for plant growth-promoting (PGP) bacteria among 41 chilling-tolerant rice endophytes. And several agronomic traits were used to evaluate the effects of bacterial inoculation on rice seedling, which were experienced for 7-d chilling stress in walk-in growth chamber. The field trials were further used to verify the performance of potential PGP endophytes on rice growth. A total of three endophytes with multiple PGP traits were obtained. It was demonstrated that Pseudomonas sp. CC-LS37 inoculation led to 18% increase of maximal efficiency of Photosystem II (PSII) after 7-d chilling stress and 7% increase of chlorophyll a content, and 64% decline of malondialdehyde content in shoot after 10-d recovery at normal temperature in walk-in growth chamber. In field trial, biopriming of seeds with strain CC-LS37 caused rice plants to increase shoot chlorophyll soil plant analysis development values (by 2.9% and 2.5%, respectively) and tiller number (both by 61%) under natural climate and chilling stress during the end of tillering stage, afterward 30% more grain yield was achieved. In conclusion, strain CC-LS37 exerted its function in increase of tiller number of chilling stress-treated rice seedlings via improvement of photosynthetic characteristics, which in turn increases the rice grain yield. This study also proposed multiple indices used in the screening of potential endophytes for conferring chilling tolerance of rice plants.


Assuntos
Endófitos , Oryza , Oryza/microbiologia , Clorofila A , Plântula/microbiologia , Sementes/microbiologia
17.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688787

RESUMO

Among the various biotic factors that disrupt crop yield, Xanthomonas oryzae pv oryzae (Xoo) is the most ruinous microbe of rice and causes bacterial leaf blight (BLB) disease. The present study focused on the utilization of copper nanoparticles (Cu-NPs) to control BLB. The copper nanosuspension (259.7 nm) prepared using Na-CMC, CuSO4·7H2O, and NaOH showed effectively inhibited Xoo (65.0 µg/ml). The performance of Cu-NPs in vivo showed enhanced plant attributes (127.9% root length and 53.9% shoot length) compared to the control and CuSO4 treated seedling. Furthermore, Cu-NPs treated seedlings showed 23.01% disease incidence (DI) compared to CuSO4 (85.71%) treated and control plants (91.83%). In addition to enhancing the growth parameters and reducing DI, seed priming with Cu-NPs improved the total chlorophyll content to 36.0% compared to the control. The assessment of antioxidant enzymes such as superoxide dismutase (1.9 U), polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase (two- to three-fold) in roots and shoots of rice plants revealed significant enhancement in Cu-NPs treated seedlings (P < 0.05). The present study suggests that Cu-NPs can be used to control Xoo and enhance rice growth.


Assuntos
Nanopartículas , Oryza , Xanthomonas , Oryza/microbiologia , Cobre/farmacologia , Plântula/microbiologia , Doenças das Plantas/microbiologia
18.
Sci Rep ; 13(1): 1280, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690688

RESUMO

Synthetic fungicides are necessary evil in crop production, their usage cannot be neglected or abandoned but must be alternated/supplemented with other control measures such as cultural, host resistance and biocontrol methods to reduce their detrimental effect on the environment and living organisms. A bioproduct (wood vinegar) was evaluated against oil palm seedling pathogens at CSIR-Oil Palm Research Institute, Kusi at different concentrations and compared with an inorganic fungicide at the manufacturer's recommended dosage. Disease pathogens were isolated from collected diseased leaf samples and pure cultures were established on cPDA. PDA was amended with wood vinegar ranging from 0 to 3.35% and 0.1%v/v of carbendazim as a positive control. Daily colony growth was measured in two diagonal lengths and averages of day 6 and day 7 were used to calculate the inhibition percentage for both pathogens. 11 mm/day was the lowest average growth rate recorded for 2.68% v/v of wood vinegar and 14.17 mm/day on control plate of Curvularia species. There was no significant difference between 0.1%v/v carbendazim, 2.68 and 3.35% v/v against Curvularia species whilst significantly, there was difference between 0.1%v/v carbendazim and 2.68 and 3.35%v/v of wood vinegar against Pestalotiopsis species.


Assuntos
Fungicidas Industriais , Plântula , Agricultura Orgânica , Fungicidas Industriais/farmacologia , Óleo de Palmeira
19.
PeerJ ; 11: e14578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643639

RESUMO

The main purpose of this study was to study the changes in growth, root system, and tissue anatomical structure of Pinus sylvestris var. mongolica under soil drought conditions. In this study, the growth indexes and photosynthesis of P. sylvestris var. mongolica seedlings under soil drought stress were studied by pot cultivation. Continuous pot water control experiment of the indoor culture of P. sylvestris var. mongolica was carried out, ensuring that the soil water content of each treatment reached 80%, 40%, and 20% of the field moisture capacity as control, moderate drought and severe drought, respectively. The submicroscopic structures of the needles and roots were observed using a scanning electron microscope and a transmission electron microscope. The response of soil roots to drought stress was studied by root scanning. Moderate drought stress increased needle stomatal density, while under severe drought stress, stomatal density decreased. At the same time, the total number of root tips, total root length, root surface area, and root volume of seedlings decreased with the deepening of the drought. Furthermore, moderate drought and severe drought stress significantly reduced the chlorophyll a and chlorophyll b content in P. sylvestris var. mongolica seedlings compared to the control group. The needle cells were deformed and damaged, and chloroplasts and mitochondria were damaged, gradually disintegrated, and the number of osmiophiles increased. There was also an increase in nuclear vacuolation.


Assuntos
Pinus sylvestris , Solo , Clorofila A , Secas , Plântula/fisiologia , Água
20.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675101

RESUMO

Sepsis leads to multi-organ failure due to aggressive systemic inflammation, which is one of the main causes of death clinically. This study aimed to evaluate whether ginseng sprout extracts (GSE) can rescue sepsis and explore its underlying mechanisms. C57BL/6J male mice (n = 15/group) were pre-administered with GSE (25, 50, and 100 mg/kg, p.o) for 5 days, and a single injection of lipopolysaccharide (LPS, 30 mg/kg, i.p) was administered to construct a sepsis model. Additionally, RAW264.7 cells were treated with LPS with/without GSE/its main components (Rd and Re) to explain the mechanisms corresponding to the animal-derived effects. LPS injection led to the death of all mice within 38 h, while GSE pretreatment delayed the time to death. GSE pretreatment also notably ameliorated LPS-induced systemic inflammation such as histological destruction in both the lung and liver, along with reductions in inflammatory cytokines, such as TNF-α, IL-6, and IL-1ß, in both tissues and serum. Additionally, GSE markedly diminished the drastic secretion of nitric oxide (NO) by suppressing the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) in both tissues. Similar changes in TNF-α, IL-1ß, NO, iNOS, and COX2 were observed in LPS-stimulated RAW264.7 cells, and protein expression data and nuclear translocation assays suggested GSE could modulate LPS-binding protein (LBP), Toll-like receptor 4 (TLR4), and NF-κB. Ginsenoside Rd could be a major active component in GSE that produces the anti-sepsis effects. Our data support that ginseng sprouts could be used as an herbal resource to reduce the risk of sepsis. The corresponding mechanisms may involve TLR4/NF-κB signaling and a potentially active component.


Assuntos
NF-kappa B , Panax , Extratos Vegetais , Sepse , Animais , Masculino , Camundongos , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Panax/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Extratos Vegetais/uso terapêutico , Fitoterapia , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...