Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.339
Filtrar
1.
Front Immunol ; 15: 1390907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962006

RESUMO

Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.


Assuntos
Doenças Autoimunes , Resveratrol , Sirtuínas , Resveratrol/uso terapêutico , Resveratrol/farmacologia , Humanos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Animais , Sirtuínas/metabolismo
2.
Medicine (Baltimore) ; 103(27): e38631, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968504

RESUMO

Current research suggests that mitochondrial dysfunction can be a contributing factor in the development of cardiac arrhythmias. In pursuit of elucidating the causal link between the biological functions of mitochondria and the occurrence of atrial fibrillation/flutter, we conducted a 2-sample Mendelian randomization (MR) study. Mitochondrial proteins were selected for exposure in this study. To enhance the accuracy of our study, we selected data on AF/AFL from the FinnGen study and the UK Biobank for MR analysis, respectively. The inverse variance-weighted method was utilized as the primary analysis technique for MR. In addition, we performed a series of sensitivity analyses to detect heterogeneity and horizontal pleiotropy. MR results indicated a significant positive association between NAD-dependent protein deacylase sirtuin-5 and AF/AFL (odds ratio = 1.084, 95% confidence interval: 1.037-1.133, P = 3.679 × 10-4, Adjusted P = .024), with consistent outcomes observed in replication analysis (odds ratio = 1.002, 95% confidence interval: 1.001-1.003, P = 4.808 × 10-4, Adjusted P = .032). NAD-dependent protein deacylase sirtuin-5 can significantly promote the occurrence of AF/AFL, and its specific mechanisms warrant further investigation.


Assuntos
Fibrilação Atrial , Flutter Atrial , Análise da Randomização Mendeliana , Fibrilação Atrial/genética , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Humanos , Flutter Atrial/genética , Flutter Atrial/epidemiologia , Sirtuínas/genética , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
3.
Immun Inflamm Dis ; 12(7): e1301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967361

RESUMO

OBJECTIVE: Acute pancreatitis (AP) stands as a frequent cause for clinical emergency hospital admissions. The X-box binding protein 1 (XBP1) was found to be implicated in pancreatic acinar cell apoptosis. The objective is to unveil the potential mechanisms governed by XBP1 and SIRT6 in the context of AP. METHODS: Caerulein-treated human pancreatic duct epithelial (HPDE) cells to establish an in vitro research model. The levels and regulatory role of SIRT6 in the treated cells were evaluated, including its effects on inflammatory responses, oxidative stress, apoptosis, and endoplasmic reticulum stress. The relationship between XBP1 and SIRT6 was explored by luciferase and ChIP experiments. Furthermore, the effect of XBP1 overexpression on the regulatory function of SIRT6 on cells was evaluated. RESULTS: Caerulein promoted the decrease of SIRT6 and the increase of XBP1 in HPDE cells. Overexpression of SIRT6 slowed down the secretion of inflammatory factors, oxidative stress, apoptosis level, and endoplasmic reticulum stress in HPDE cells. However, XBP1 negatively regulated SIRT6, and XBP1 overexpression partially reversed the regulation of SIRT6 on the above aspects. CONCLUSION: Our study illuminates the role of XBP1 in downregulating SIRT6 in HPDE cells, thereby promoting cellular injury. Inhibiting XBP1 or augmenting SIRT6 levels holds promise in preserving cell function and represents a potential therapeutic avenue in the management of AP.


Assuntos
Apoptose , Regulação para Baixo , Células Epiteliais , Ductos Pancreáticos , Pancreatite , Sirtuínas , Proteína 1 de Ligação a X-Box , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Células Epiteliais/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Pancreatite/metabolismo , Pancreatite/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Estresse do Retículo Endoplasmático , Estresse Oxidativo , Linhagem Celular , Ceruletídeo/toxicidade
4.
BMC Cancer ; 24(1): 848, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020302

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS: Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS: Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION: SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Neoplasias Pulmonares , RNA Longo não Codificante , Sirtuínas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Clin Exp Pharmacol Physiol ; 51(9): e13909, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038854

RESUMO

Diabetic kidney disease (DKD) is a complication of diabetic mellitus. New treatments need to be developed. This study aimed to investigate the effects of quercetin-4'-O-ß-D-glucopyranoside (QODG) on podocyte injury. Podocytes were cultured in high glucose (HG) medium, treated with QODG, and overexpressing or knocking down SIRT5. Oxidative stress indicators were assessed using corresponding kits. Pyroptosis was detected by flow cytometry and western blot analysis. Succinylation modification was detected using immunoprecipitation (IP) and western blot analysis. The interaction between NEK7 and NLRP3 was determined by co-IP. The results indicated that QODG inhibited oxidative stress and pyroptosis of podocytes induced by HG. Besides, QODG suppressed succinylation levels in HG-induced podocytes, with the upregulation of SIRT5. Knockdown of SIRT5 reversed the effects of QODG on oxidative stress and pyroptosis. Moreover, SIRT5 inhibited the succinylation of NEK7 and the interaction between NLRP3 and NEK7. In conclusion, QODG upregulates SIRT5 to inhibit the succinylation modification of NEK7, impedes the interaction between NEK7 and NLRP3, and then inhibits the pyroptosis and oxidative stress injury of podocytes under HG conditions. The findings suggested that QODG has the potential to treat DKD and explore a novel underlying mechanism of QODG function.


Assuntos
Quinases Relacionadas a NIMA , Podócitos , Sirtuínas , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Quinases Relacionadas a NIMA/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glucosídeos/farmacologia , Linhagem Celular
6.
Clin Epigenetics ; 16(1): 96, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033117

RESUMO

BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Epigênese Genética , Sirtuínas , Sirtuínas/genética , Sirtuínas/metabolismo , Camundongos , Adipócitos/metabolismo , Animais , Epigênese Genética/genética , Adipogenia/genética , Humanos , Mutação , Obesidade/genética , Obesidade/metabolismo , Processamento de Proteína Pós-Traducional/genética , Histonas/metabolismo , Histonas/genética
7.
Nat Commun ; 15(1): 6150, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034314

RESUMO

Non-neovascular or dry age-related macular degeneration (AMD) is a multi-factorial disease with degeneration of the aging retinal-pigmented epithelium (RPE). Lysosomes play a crucial role in RPE health via phagocytosis and autophagy, which are regulated by transcription factor EB/E3 (TFEB/E3). Here, we find that increased AKT2 inhibits PGC-1α to downregulate SIRT5, which we identify as an AKT2 binding partner. Crosstalk between SIRT5 and AKT2 facilitates TFEB-dependent lysosomal function in the RPE. AKT2/SIRT5/TFEB pathway inhibition in the RPE induced lysosome/autophagy signaling abnormalities, disrupted mitochondrial function and induced release of debris contributing to drusen. Accordingly, AKT2 overexpression in the RPE caused a dry AMD-like phenotype in aging Akt2 KI mice, as evident from decline in retinal function. Importantly, we show that induced pluripotent stem cell-derived RPE encoding the major risk variant associated with AMD (complement factor H; CFH Y402H) express increased AKT2, impairing TFEB/TFE3-dependent lysosomal function. Collectively, these findings suggest that targeting the AKT2/SIRT5/TFEB pathway may be an effective therapy to delay the progression of dry AMD.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Degeneração Macular , Proteínas Proto-Oncogênicas c-akt , Epitélio Pigmentado da Retina , Transdução de Sinais , Sirtuínas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Humanos , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Lisossomos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino
8.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000044

RESUMO

Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.


Assuntos
Nefropatias , Rim , Mitocôndrias , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/genética , Mitocôndrias/metabolismo , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
9.
Toxicol Appl Pharmacol ; 489: 117019, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950736

RESUMO

Maternal hypoxia is strongly linked to insulin resistance (IR) in adult offspring, and altered insulin signaling for muscle glucose uptake is thought to play a central role. However, whether the SIRT3/GSK-3ß/GLUT4 axis is involved in maternal hypoxia-induced skeletal muscle IR in old male rat offspring has not been investigated. Maternal hypoxia was established from Days 5 to 21 of pregnancy by continuous infusion of nitrogen and air. The biochemical parameters and levels of key insulin signaling molecules of old male rat offspring were determined through a series of experiments. Compared to the control (Ctrl) old male rat offspring group, the hypoxic (HY) group exhibited elevated fasting blood glucose (FBG) (∼30%), fasting blood insulin (FBI) (∼35%), total triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), as well as results showing impairment in the glucose tolerance test (GTT) and insulin tolerance test (ITT). In addition, hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) revealed impaired cellular structures and mitochondria in the longitudinal sections of skeletal muscle from HY group mice, which might be associated with decreased SIRT3 expression. Furthermore, the expression of insulin signaling molecules, such as GSK-3ß and GLUT4, was also altered. In conclusion, the present results indicate that the SIRT3/GSK-3ß/GLUT4 axis might be involved in maternal hypoxia-induced skeletal muscle IR in old male rat offspring.


Assuntos
Transportador de Glucose Tipo 4 , Glicogênio Sintase Quinase 3 beta , Hipóxia , Resistência à Insulina , Músculo Esquelético , Sirtuína 3 , Animais , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Feminino , Transportador de Glucose Tipo 4/metabolismo , Gravidez , Sirtuína 3/metabolismo , Ratos , Hipóxia/metabolismo , Transdução de Sinais , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Sprague-Dawley , Insulina/sangue , Insulina/metabolismo , Glicemia/metabolismo , Sirtuínas
10.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892461

RESUMO

The Sirtuin (SIRT1-7) family comprises seven evolutionary-conserved enzymes that couple cellular NAD availability with health, nutrition and welfare status in vertebrates. This study re-annotated the sirt3/5 branch in the gilthead sea bream, revealing three paralogues of sirt3 (sirt3.1a/sirt3.1b/sirt3.2) and two of sirt5 (sirt5a/sirt5b) in this Perciform fish. The phylogeny and synteny analyses unveiled that the Sirt3.1/Sirt3.2 dichotomy was retained in teleosts and aquatic-living Sarcopterygian after early vertebrate 2R whole genome duplication (WGD). Additionally, only certain percomorphaceae and gilthead sea bream showed a conserved tandem-duplicated synteny block involving the mammalian-clustered sirt3.1 gene (psmd13-sirt3.1a/b-drd4-cdhr5-ctsd). Conversely, the expansion of the Sirt5 branch was shaped by the teleost-specific 3R WGD. As extensively reviewed in the literature, human-orthologues (sirt3.1/sirt5a) showed a high, conserved expression in skeletal muscle that increased as development advanced. However, recent sirt3.2 and sirt5b suffered an overall muscle transcriptional silencing across life, as well as an enhanced expression on immune-relevant tissues and gills. These findings fill gaps in the ontogeny and differentiation of Sirt genes in the environmentally adaptable gilthead sea bream, becoming a good starting point to advance towards a full understanding of its neo-functionalization. The mechanisms originating from these new paralogs also open new perspectives in the study of cellular energy sensing processes in vertebrates.


Assuntos
Evolução Molecular , Filogenia , Dourada , Sirtuínas , Sintenia , Animais , Dourada/genética , Dourada/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Família Multigênica , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Vertebrados/genética
11.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892612

RESUMO

Pharmacotherapy is the therapeutic mainstay in epilepsy; however, in about 30% of patients, epileptic seizures are drug-resistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of a KD are not fully understood. Epileptic seizures lead to an increased energy demand of neurons. An improvement in energy provisions may have a protective effect. C8 and C10 fatty acids have been previously shown to activate mitochondrial function in vitro. This could involve sirtuins (SIRTs) as regulatory elements of energy metabolism. The aim of the present study was to investigate whether ß-hydroxybutyrate (ßHB), C8 fatty acids, C10 fatty acids, or a combination of C8 and C10 (250/250 µM) fatty acids, which all increase under a KD, could up-regulate SIRT1, -3, -4, and -5 in HT22 hippocampal murine neurons in vitro. Cells were incubated for 1 week in the presence of these metabolites. The sirtuins were measured at the enzyme (fluorometrically), protein (Western blot), and gene expression (PCR) levels. In hippocampal cells, the C8, C10, and C8 and C10 incubations led to increases in the sirtuin levels, which were not inferior to a ßHB incubation as the 'gold standard'. This may indicate that both C8 and C10 fatty acids are important for the antiepileptic effect of a KD. A KD may be replaced by nutritional supplements of C8 and C10 fatty acids, which could facilitate the diet.


Assuntos
Ácido 3-Hidroxibutírico , Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Ácidos Graxos , Hipocampo , Neurônios , Sirtuínas , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dieta Cetogênica/métodos , Camundongos , Sirtuínas/metabolismo , Ácidos Graxos/metabolismo , Epilepsia Resistente a Medicamentos/dietoterapia , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ácido 3-Hidroxibutírico/farmacologia , Linhagem Celular
12.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891773

RESUMO

Anoikis, a form of apoptosis resulting from the loss of cell-extracellular matrix interaction, is a significant barrier to cancer cell metastasis. However, the epigenetic regulation of this process remains to be explored. Here, we demonstrate that the histone deacetylase sirtuin 6 (SIRT6) plays a pivotal role in conferring anoikis resistance to colorectal cancer (CRC) cells. The protein level of SIRT6 is negatively correlated with anoikis in CRC cells. The overexpression of SIRT6 decreases while the knockdown of SIRT6 increases detachment-induced anoikis. Mechanistically, SIRT6 inhibits the transcription of N-myc downstream-regulated gene 1 (NDRG1), a negative regulator of the AKT signaling pathway. We observed the up-regulation of SIRT6 in advanced-stage CRC samples. Together, our findings unveil a novel epigenetic program regulating the anoikis of CRC cells.


Assuntos
Anoikis , Proteínas de Ciclo Celular , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Sirtuínas , Humanos , Anoikis/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sirtuínas/metabolismo , Sirtuínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Regulação para Baixo , Transdução de Sinais , Epigênese Genética
13.
Iran J Kidney Dis ; 18(3): 168-178, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38904337

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) belongs to the major cause of end-stage kidney disease. We probed the functions of a microRNA miR-33a in inducing podocytes injury during childhood  DN (CDN). METHODS: Kidney samples were collected from 20 children with DN. Matrix deposition and glomerular basement membranes thickness were examined by periodic acid-Schiff staining. Immunofluorescence staining was performed to assess kidney function-related proteins. MicroRNA (MiR)-33a mimic together with miR-33a inhibitor was transfected into podocytes for determining the roles of miR-33a. Glomerular podocyte apoptosis was determined by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining along with flow cytometry. RESULTS: Down-regulation of Nephrin and Podocin and increased podocyte apoptosis rate were observed in the glomerulus of CDN as well as podocytes treated with high glucose. MiR-33a was up regulated in the glomeruli and glucose-treated podocytes. Injury in podocytes was aggravated with miR-33a elevation but alleviated with miR-33a inhibition. Moreover, the expression of Sirtuin 6 (Sirt6) was decreased while the levels of notch receptor 1 (Notch1) and notch receptor 4 (Notch4) were elevated in the glomerulus and glucose-treated podocytes. Decreased level of Sirt6 upon glucose treatment was abrogated by miR-33a inhibition, and the podocytes injury induced by glucose exposure was relieved by Sirt6 via Notch signaling. CONCLUSION: These findings indicated that miR-33a promoted podocyte injury via targeting Sirt6-dependent Notch signaling in CDN, which might provide a novel sight for CDN treatment. DOI: 10.52547/ijkd.7904.


Assuntos
Apoptose , Nefropatias Diabéticas , MicroRNAs , Podócitos , Transdução de Sinais , Sirtuínas , MicroRNAs/metabolismo , MicroRNAs/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Podócitos/metabolismo , Podócitos/patologia , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Apoptose/genética , Masculino , Criança , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Feminino , Receptores Notch/metabolismo , Receptores Notch/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glucose/metabolismo , Regulação para Cima , Receptor Notch1/metabolismo , Receptor Notch1/genética , Regulação para Baixo
14.
Int J Biol Sci ; 20(8): 3219-3235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904020

RESUMO

The sirtuins constitute a group of histone deacetylases reliant on NAD+ for their activity that have gained recognition for their critical roles as regulators of numerous biological processes. These enzymes have various functions in skeletal muscle biology, including development, metabolism, and the body's response to disease. This comprehensive review seeks to clarify sirtuins' complex role in skeletal muscle metabolism, including glucose uptake, fatty acid oxidation, mitochondrial dynamics, autophagy regulation, and exercise adaptations. It also examines their critical roles in developing skeletal muscle, including myogenesis, the determination of muscle fiber type, regeneration, and hypertrophic responses. Moreover, it sheds light on the therapeutic potential of sirtuins by examining their impact on a range of skeletal muscle disorders. By integrating findings from various studies, this review outlines the context of sirtuin-mediated regulation in skeletal muscle, highlighting their importance and possible consequences for health and disease.


Assuntos
Músculo Esquelético , Sirtuínas , Músculo Esquelético/metabolismo , Humanos , Sirtuínas/metabolismo , Animais , Desenvolvimento Muscular/fisiologia , Doenças Musculares/metabolismo
15.
Clin Nutr ; 43(7): 1816-1831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870662

RESUMO

BACKGROUND: Optical atrophy 1 (OPA1), a protein accountable for mitochondrial fusion, facilitates the restoration of mitochondrial structure and function following cerebral ischemia/reperfusion (I/R) injury. The OPA1-conferred mitochondrial protection involves its expression and activity, which can be improved by SIRT3 in non-cerebral ischemia. Nevertheless, it remains obscure whether SIRT3 enhances the expression and activity of OPA1 after cerebral I/R injury. METHODS: Mature male Sprague Dawley rats were intracranially injected with adeno-associated viral-Sirtuin-3(AAV-SIRT3) and AAV-sh_OPA1, followed by a 90-min temporary blockage of the middle cerebral artery and subsequent restoration of blood flow. Cultured cortical neurons of rats were transfected with LV-SIRT3 or LV-sh_OPA1 before a 2-h oxygen-glucose deprivation and reoxygenation. The rats and neurons were subsequently treated with a selective OPA1 activity inhibitor (MYLS22). The interaction between SIRT3 and OPA1 was assessed by molecular dynamics simulation technology and co-immunoprecipitation. The expression, function, and specific protective mechanism of SIRT3 were examined by various analyses. RESULTS: SIRT3 interacted with OPA1 in the rat cerebral cortex before and after cerebral I/R. After cerebral I/R damage, SIRT3 upregulation increased the OPA1 expression, which enhanced deacetylation and OPA1 activity, thus alleviating cerebral infarct volume, neuronal apoptosis, oxidative pressure, and impairment in mitochondrial energy production; SIRT3 upregulation also improved neuromotor performance, repaired mitochondrial ultrastructure and membrane composition, and promoted the mitochondrial biogenesis. These neuroprotective effects were partly reversed by OPA1 expression interference and OPA1 activity inhibitor MYLS22. CONCLUSION: In rats, SIRT3 enhances the expression and activity of OPA1, facilitating the repair of mitochondrial structure and functional recovery following cerebral I/R injury. These findings highlight that regulating SIRT3 may be a promising therapeutic strategy for ischemic stroke.


Assuntos
GTP Fosfo-Hidrolases , AVC Isquêmico , Mitocôndrias , Ratos Sprague-Dawley , Sirtuína 3 , Animais , Masculino , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Sirtuína 3/metabolismo , Sirtuína 3/genética , Ratos , Mitocôndrias/metabolismo , AVC Isquêmico/metabolismo , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Sirtuínas
16.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870055

RESUMO

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
17.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894630

RESUMO

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Assuntos
Berberina , Proteína Forkhead Box O3 , Hipóxia , Transdução de Sinais , Sirtuínas , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Sirtuínas/metabolismo , Sirtuínas/genética , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Camundongos , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Modelos Animais de Doenças
18.
Int Immunopharmacol ; 137: 112465, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38878489

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is a primary culprit of inflammatory bowel disease that entails prompt and effective clinical intervention. Remdesivir (RDV), a broad-spectrum antiviral nucleotide, has been found to exert anti-inflammatory effects in experimental animals. AIM: This study investigates the prospective anti-inflammatory merit of RDV on an experimental model of UC. The role of SIRT6/FoxC1 in regulating colonic cell inflammation and pyroptosis is delineated. METHOD: Rats were challenged with a single intrarectal dose of acetic acid (AA) solution (2 ml; 4 % v/v) to induce colitis. RDV (20 mg/kg, ip) and sulfasalazine (100 mg/kg, po) were administered to rats 14 days before the injection of AA. RESULTS: Administration of RDV ameliorated colonic cell injury and loss as manifested by improvement of severe colon histopathological mutilation and macroscopic damage and disease activity index scores together with restoration of normal colon weight/length ratio. In addition, RDV alleviated colonic inflammatory reactions, thereby curtailing NF-κB activation and the inflammatory cytokines, TNF-α, IL-18, and IL-1ß. Mitigation of colonic oxidative stress and apoptotic reactions were also evident in the setting of RDV treatment. Mechanistically, RDV enhanced the anti-inflammatory cascade, SIRT6/FoxC1, together with curbing the pyroptotic signal, NLRP3/cleaved caspase-1/Gasdermin D-elicited colonic inflammatory cell death. CONCLUSION: This study reveals, for the first time, the anti-inflammatory effect of RDV against experimental UC. Augmenting SIRT6/FoxC1-mediated repression of colonic inflammation and pyroptosis might advocate the colo-protective potential of RDV.


Assuntos
Ácido Acético , Monofosfato de Adenosina , Alanina , Anti-Inflamatórios , Colite Ulcerativa , Colo , Citocinas , Piroptose , Sirtuínas , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Piroptose/efeitos dos fármacos , Ratos , Masculino , Colo/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Sirtuínas/metabolismo , Alanina/análogos & derivados , Alanina/uso terapêutico , Alanina/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Monofosfato de Adenosina/farmacologia , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Guanosina Monofosfato , Humanos
19.
Neurosci Lett ; 836: 137882, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38909839

RESUMO

Huntington's disease (HD) is an autosomal inherited progressive neurodegenerative disorder which is caused by the CAG trinucleotide repeat in the huntingtin gene. The mutation induces mitochondrial dysfunction in neurons, which leads to striatal neuronal loss. The efficacy of the available therapies is limited, thus acquisition of more data about the pathomechanism of HD and development of new strategies is urgent. Sirtuins (Sirt1-7) belong to the histone deacetylase family, and interestingly they have been associated with HD, however, their role in HD is still not fully understood. To clarify the role of sirtuins in HD, we utilized a 3-nitropropionic acid (3-NP) induced HD model and assessed alterations in gene expression using RT-PCR. Moreover, we studied the extension of neurodegeneration in the striatum, and behavioural changes. Furthermore, we involved Sirt3 knockout (Sirt3KO) mice to investigate the impact of Sirt3 deficiency in the expression of the other sirtuins. Our results showed that with 3-NP treatment, the mRNA level of Sirt2,5,7 changed significantly in wild-type (WT) mice, whereas in Sirt3KO animals there was no change. Interestingly, Sirt3 deficiency did not exacerbate 3-NP-mediated striatal neuronal loss, while Sirt3KO animals showed higher mortality than WT littermates. However, the absence of Sirt3 did not affect the behaviour of animals. Finally, we demonstrated that the changes in the expression of sirtuins are age- and sex- dependent. According to our findings, there is evidence that Sirt3 has a major impact on the regulation of other sirtuin isoforms, survival and neuroprotection. However, this neuroprotective effect does not manifest in the behaviour.


Assuntos
Corpo Estriado , Doença de Huntington , Camundongos Knockout , Nitrocompostos , Propionatos , Sirtuína 3 , Animais , Nitrocompostos/toxicidade , Propionatos/farmacologia , Propionatos/toxicidade , Sirtuína 3/genética , Sirtuína 3/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/induzido quimicamente , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Feminino , Sirtuínas/genética , Sirtuínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Expressão Gênica/efeitos dos fármacos
20.
Anticancer Res ; 44(7): 2861-2870, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925807

RESUMO

BACKGROUND/AIM: Glutamine metabolism is crucial in cell proliferation, aging, and apoptosis across various cancer types. Existing research indicates that Sirtuin 4 (SIRT4), primarily located in mitochondria, modulates this process. This study aimed to clarify the regulatory relationship between SIRT4 and glutamine metabolism in cervical cancer. MATERIALS AND METHODS: SIRT4 mRNA levels and their clinical correlation to cervical cancer were analyzed using the UALCAN database. Immunohistochemistry (IHC) was performed to assess SIRT4 protein expression in tissue samples from cervical cancer patients. Transient transfection was employed to create Hela and Siha cell lines with overexpressed SIRT4, mitogen-activated extracellular signal-regulated kinase (MEK), and glutaminase 1 (GLS1). The impact on cellular functions was studied using MTT, soft agar, transwell, and western blotting assays. Glutamate and ATP levels were also measured to evaluate metabolic changes. RESULTS: Low levels of SIRT4 mRNA in cervical cancer tissues correlated with tumor metastasis and poor survival rates. Overexpression of SIRT4 led to suppressed cell proliferation, colony growth, and motility, along with significant down-regulation of GLS expression, a key contributor to glutamine metabolism. Additionally, SIRT4 overexpression resulted in the inactivation of the MEK/ERK/c-myc signaling pathway, while overexpression of MEK reversed these effects. Notably, the inhibitory effects of SIRT4 on cell proliferation, colony formation, migration, and invasion in Hela and Siha cells were significantly attenuated following GLS1 overexpression. CONCLUSION: SIRT4 acts as an anti-cancer agent in cervical cancer by inhibiting glutamine metabolism through the MEK/ERK/c-myc signaling pathway, providing a novel sight for cervical cancer therapy.


Assuntos
Proliferação de Células , Glutamina , Proteínas Proto-Oncogênicas c-myc , Sirtuínas , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Feminino , Glutamina/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Células HeLa , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Apoptose , Proteínas Mitocondriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA