Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.725
Filtrar
1.
Gut Microbes ; 16(1): 2382336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046079

RESUMO

Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.


Assuntos
Biotransformação , Ácidos Graxos , Microbioma Gastrointestinal , Esteróis , Humanos , Ácidos Graxos/metabolismo , Animais , Esteróis/metabolismo , Bactérias/metabolismo , Imunomodulação , Metabolismo dos Lipídeos
2.
Mar Pollut Bull ; 205: 116680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981193

RESUMO

The sedimentation of organic carbon in the Ulleung Basin, in the southwestern East Sea (Japan Sea) was investigated using radiocarbon and sterols. The accumulation rates of organic carbon and the contents of brassicasterol and dinosterol were higher on the slope than in the central basin, reflecting the surface water productivity, whereas cholesterol showed similar or higher contents in the central basin. The coprostanol concentration in surface sediments reflected the dispersion of sewage dumped in this region. The vertical distribution showed that the coprostanol concentration was the highest in the top 5-cm layer near the Korea Strait, close to one of the two dumping sites. A high coprostanol concentration was also found near the coast further north, where the content peaked at ∼10 cm depth. The vertical distribution of coprostanol helped to estimate the sediment accumulation rate at sites where radiocarbon gradient was too small or the values were too variable.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Esgotos , Esteróis , Sedimentos Geológicos/química , Esgotos/química , Esteróis/análise , Oceanos e Mares , Japão , Poluentes Químicos da Água/análise
3.
Biophys J ; 123(13): 1896-1902, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38850024

RESUMO

The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the ordering of hydrocarbon chains and the packing of lipids. Many eukaryotes synthesize sterols, which are uniquely capable of modulating the lipid order to decouple membrane stability from fluidity. Ancient sterol analogs known as hopanoids are found in many bacteria and proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. In this work, simulations, monolayer experiments, and cellular assays show that hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest that cholesterol's broader lipid-ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.


Assuntos
Fosfolipídeos , Esteróis , Esteróis/química , Esteróis/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Colesterol/química , Colesterol/metabolismo
4.
Microbiol Res ; 286: 127815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944943

RESUMO

Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.


Assuntos
Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Terpenos/metabolismo , Vias Biossintéticas/genética , Esteróis/metabolismo , Esteróis/biossíntese , Alcaloides/biossíntese , Alcaloides/metabolismo , Álcoois Graxos/metabolismo , Organelas/metabolismo , Redes e Vias Metabólicas/genética
5.
Plant Sci ; 346: 112168, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914157

RESUMO

Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear. Previous studies indicate that ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor, is pivotal in skotomorphogenesis to photomorphogenesis transition. Additionally, PHYTOCHROME INTERACTING FACTORs (PIFs), bHLH transcription factors, act as negative regulators. To unveil the light-dependent regulation of the mevalonic acid (MVA) pathway, a precursor for sterol biosynthesis, mutants of light signaling components, specifically hy5-215 and the pifq quadruple mutant (pif 1,3,4, and 5), were analyzed in Arabidopsis thaliana. Gene expression analysis in wild-type and mutants implicates HY5 and PIFs in regulating sterol biosynthesis genes. DNA-protein interaction analysis confirms their interaction with key genes like AtHMGR2 in the rate-limiting pathway. Results strongly suggest HY5 and PIFs' pivotal role in light-dependent MVA pathway regulation, including the sterol biosynthetic branch, in Arabidopsis, highlighting a diverse array of light signaling components finely tuning crucial growth pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Esteróis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Esteróis/metabolismo , Esteróis/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutação , Luz , Ácido Mevalônico/metabolismo
6.
Food Funct ; 15(12): 6324-6334, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38726678

RESUMO

Dietary oxidized sterols (DOxS) are cholesterol-like molecules known to exert pro-inflammatory, pro-oxidant, and pro-apoptotic effects, among others. We present the FooDOxS database, a comprehensive compilation of DOxS content in over 1680 food items from 120 publications across 25 countries, augmented by data generated by our group. This database reports DOxS content in foods classified under the NOVA and What We Eat in America (WWEIA) systems, allowing a comprehensive and statistically robust summary of DOxS content in foods. Notably, we evaluated the efficacy of using NOVA and WWEIA classifications in capturing DOxS variations across food categories. Our findings provide insights into the strengths and limitations of these classification systems, enhancing their utility for assessing dietary components. This research contributes to the understanding of DOxS in food processing and suggests refinements for classification systems, holding promise for improved food safety and public health assessments.


Assuntos
Bases de Dados Factuais , Oxirredução , Esteróis , Esteróis/análise , Análise de Alimentos , Humanos , Fitosteróis/análise
7.
Chemosphere ; 361: 142335, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754494

RESUMO

In Japanese agricultural lands, nitrate-nitrogen contamination of soil and groundwater often occurs due to the application of livestock excrements and compost. Therefore, rural soils in Japan were sampled and analyzed for nitrate-nitrogen leaching, heavy metal content, and sterols associated with livestock excrement and compost to calculate contamination risk indicators. The results were analyzed using self-organizing maps and cluster analysis. Nitrate-nitrogen content using water extraction was detected in most of the sampled soils. In addition, many samples from areas that were already severely contaminated with nitrate-nitrogen showed particularly high concentrations. Coprostanol, an indicator of fecal contamination, was detected in more than half of the samples. The main source of nitrate-nitrogen contamination in these areas is livestock excrement and compost. Self-organization maps showed that areas with high nitrate-nitrogen contamination also corresponded to areas with high copper and zinc soil contents. The self-organization maps and cluster analysis resulted in five clusters: a nitrate-contaminated group mainly originating from livestock excrement and compost, a heavy metal-contaminated group, a general group, a nitrate-contaminated group mainly originating from chemical fertilizers, and a contaminated group with potentially hazardous substances requiring attention. Authorities and decision-makers can use the results to prioritize areas requiring remediation.


Assuntos
Agricultura , Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Nitratos , Poluentes do Solo , Solo , Esteróis , Poluentes do Solo/análise , Nitratos/análise , Metais Pesados/análise , Água Subterrânea/química , Solo/química , Japão , Esteróis/análise , Gado , Poluentes Químicos da Água/análise , Animais , Fertilizantes/análise , População do Leste Asiático
8.
Bioessays ; 46(7): e2400073, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760877

RESUMO

Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2-intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post-translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6-dependent enzymes require NADPH. Moreover, MARCHF6 is activated by NADPH, although what this means for control of cholesterol synthesis is unclear. Indeed, this presents a paradox for how NADPH regulates this vital pathway, since NADPH is a cofactor in cholesterol biosynthesis and yet, low levels of NADPH should spare cholesterol biosynthesis enzymes targeted by MARCHF6 by reducing its activity. We speculate MARCHF6 helps mammalian cells adapt to oxidative stress (signified by low NADPH levels) by reducing degradation of cholesterogenic enzymes, thereby maintaining synthesis of protective cholesterol.


Assuntos
Colesterol , NADP , Estresse Oxidativo , Ubiquitina-Proteína Ligases , NADP/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Humanos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Oxirredução , Esteróis/metabolismo , Esteróis/biossíntese
9.
Chemistry ; 30(41): e202400778, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38770991

RESUMO

A ß-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the ß-glucosyl sterol was less capable to alter the morphology of this specific organelle.


Assuntos
Corantes Fluorescentes , Lisossomos , Doenças Neurodegenerativas , Neurônios , Esteróis , Corantes Fluorescentes/química , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Lisossomos/metabolismo , Lisossomos/química , Esteróis/química , Humanos , Animais
10.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38713167

RESUMO

Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in FF, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia. However, the impact of FF-MAS on GCs within follicles has not been explored so far. In this study, we uncovered a novel role of FF-MAS in facilitating GC survival under hypoxic conditions by inhibiting STAT4 expression. We found that STAT4 expression was upregulated in porcine GCs exposed to 1% O2. Both gain and loss of function assays confirmed that STAT4 was required for cell apoptosis under hypoxia conditions, and that the GC apoptosis caused by hypoxia was markedly attenuated following FF-MAS treatment through inhibition of STAT4 expression. Correlation analysis in vivo revealed that GC apoptosis was associated with increased STAT4 expression, while the FF-MAS content in follicular fluid was negatively correlated with STAT4 mRNA levels and cell apoptosis. These findings elucidate a novel role of FF-MAS-mediated protection of GCs by inhibiting STAT4 expression under hypoxia, which might contribute to the mechanistic understanding of follicular development.


Granulosa cells (GCs) influence follicle growth and development, with their proliferation and differentiation promoting follicle development and ovulation, while their programmed cell death and degeneration trigger follicular atresia. In this study, to investigate the effect of FF-MAS on GCs of follicles, we performed gene expression profiling in the domestic pig (Sus scrofa). We discovered STAT4 is required for GC apoptosis under hypoxia conditions both in vitro and in vivo and FF-MAS prevents porcine ovarian granulosa cells from hypoxia-induced apoptosis via inhibiting STAT4 expression.


Assuntos
Apoptose , Líquido Folicular , Células da Granulosa , Meiose , Fator de Transcrição STAT4 , Animais , Células da Granulosa/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , Suínos , Líquido Folicular/química , Meiose/efeitos dos fármacos , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT4/genética , Esteróis , Hipóxia/veterinária
11.
Food Chem ; 452: 139566, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728892

RESUMO

Red pepper powder (RPP) made from ground dried red pepper (Capsicum annuum L.) is prone to adulteration with fungal-spoiled RPP to gain unfair profits in Korea. This study aimed to investigate the effects of fungal infection on the ergosterol and phytosterol content of RPP and evaluate the potential of the sterol content as a marker for identifying fungal-spoiled RPP. Ergosterol was detected only in fungal-spoiled RPP and not in unspoiled RPP [

Assuntos
Capsicum , Contaminação de Alimentos , Fungos , Esteróis , Capsicum/microbiologia , Capsicum/química , Contaminação de Alimentos/análise , Fungos/metabolismo , Fungos/isolamento & purificação , Esteróis/análise , Pós/química , Biomarcadores/análise , Fitosteróis/análise , Ergosterol/análise
12.
Food Chem ; 453: 139640, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38762945

RESUMO

Gas chromatography with mass spectrometry (GC/MS) and fractionation steps were used to determine the sterol patterns of red goji berries in detail. Twenty-five sterols were detected in fresh berries of two species (Lycium barbarum and L. chinense) from bushes grown in the botanical garden of the University of Hohenheim, and 20 sterols were identified. The rarely occurring campesta-5,24(25)-dienol, ß-sitosterol, Δ5-avenasterol, campesterol, and cycloartenol represented >60 % of the total sterol content. Maturity and drying of fresh red goji berries caused small changes but did not affect the characteristic sterol pattern. This was confirmed by analyzing various commercial dried red goji berry samples from different sources. Separated flesh and seed samples revealed pronounced differences in the sterol pattern. A new method of merging GC/MS chromatograms showed that ∼75 % of the sterols were present in seeds and ∼25 % in flesh. The unique sterol profile may be exploited to authenticate red goji berries.


Assuntos
Frutas , Cromatografia Gasosa-Espectrometria de Massas , Lycium , Esteróis , Frutas/química , Esteróis/análise , Lycium/química , Fitosteróis/análise , Extratos Vegetais/química
13.
Trends Plant Sci ; 29(5): 524-534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565452

RESUMO

Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.


Assuntos
Interações entre Hospedeiro e Microrganismos , Plantas , Esteróis , Interações entre Hospedeiro e Microrganismos/fisiologia , Fitosteróis/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Transdução de Sinais , Esteróis/metabolismo
14.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672427

RESUMO

Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.


Assuntos
Esteróis , Animais , Humanos , Vias Biossintéticas/efeitos dos fármacos , Colesterol/biossíntese , Colesterol/metabolismo , Lanosterol/metabolismo , Esteróis/biossíntese , Esteróis/metabolismo
16.
J Agric Food Chem ; 72(15): 8444-8459, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574108

RESUMO

Cytochrome P450 sterol 14α-demethylase (CYP51) is a key enzyme involved in the sterol biosynthesis pathway and serves as a target for sterol demethylation inhibitors (DMIs). In this study, the 3D structures of three CPY51 paralogues from Calonectria ilicicola (C. ilicicola) were first modeled by AlphaFold2, and molecular docking results showed that CiCYP51A, CiCYP51B, or CiCYP51C proteins individually possessed two active pockets that interacted with DMIs. Our results showed that the three paralogues play important roles in development, pathogenicity, and sensitivity to DMI fungicides. Specifically, CiCYP51A primarily contributed to cell wall integrity maintenance and tolerance to abiotic stresses, and CiCYP51B was implicated in sexual reproduction and virulence, while CiCYP51C exerted negative regulatory effects on sterol 14α-demethylase activity within the ergosterol biosynthetic pathway, revealing its genus-specific function in C. ilicicola. These findings provide valuable insights into developing rational strategies for controlling soybean red crown rot caused by C. ilicicola.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hypocreales , Lanosterol , Lanosterol/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Esteróis , Esterol 14-Desmetilase/química
17.
Proc Natl Acad Sci U S A ; 121(15): e2315575121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568972

RESUMO

The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.


Assuntos
Saccharomyces cerevisiae , Esteróis , Esteróis/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Glicoproteínas de Membrana/metabolismo
18.
Microb Cell Fact ; 23(1): 105, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594656

RESUMO

BACKGROUND: Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS: Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION: The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.


Assuntos
Fitosteróis , Progesterona , Bovinos , Animais , Pregnenolona/metabolismo , Esteróis , Esteroides , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Mamíferos/metabolismo , Éteres
19.
Mol Cell ; 84(7): 1183-1185, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579675

RESUMO

Li et al. and Freitas et al. recently identified 7-dehydrocholesterol (7-DHC), a sterol produced through the cholesterol biosynthetic pathway, as a lipid-soluble antioxidant that protects cells from ferroptosis, a cell death pathway triggered by iron-catalyzed phospholipid peroxidation.1,2.


Assuntos
Ferro , Esteróis , Desidrocolesteróis/metabolismo , Colesterol
20.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615640

RESUMO

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Assuntos
Aflatoxina B1 , Apoptose , Sobrevivência Celular , Células Intersticiais do Testículo , Triterpenos , Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Masculino , Triterpenos/farmacologia , Esteróis/farmacologia , Caspase 3/metabolismo , Substâncias Protetoras/farmacologia , Caspase 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA