Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Food Funct ; 14(23): 10520-10534, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37946597

RESUMO

The oil of Torreya grandis (TGO), a common nut in China, is considered to be a bioactive edible oil and has a great value in functional food development. In this study, the neuroprotective effects of TGO were investigated on a scopolamine (SCOP)-induced C57BL/6J mouse model. The mice were pretreated with TGO for 30 days (1000 mg per kg per day and 3000 mg per kg per day, i.g.). Behavioral tests showed that the supplementation of TGO could prevent the cognitive deficits induced by SCOP. TGO rebalanced the disorder of the cholinergic system by upgrading the level of acetylcholine. TGO also alleviated the over-activation of microglia and inhibited neuroinflammation and oxidative stress. Additionally, TGO could regulate the composition of gut microbiota, increase the production of short-chain fatty acids, and decrease the content of lipopolysaccharides in the serum. In conclusion, TGO has the potential to prevent loss of memory and impairment of cognition, which may be related to its regulation of the gut microbiota-metabolite-brain axis.


Assuntos
Disfunção Cognitiva , Taxaceae , Camundongos , Animais , Escopolamina/efeitos adversos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Estresse Oxidativo
2.
Int J Biol Macromol ; 253(Pt 2): 126702, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673161

RESUMO

ß-Carotene functions in plant growth and development and plays an important role in resisting abiotic stress, such as drought and salt stress. The specific function and mechanism by which ß-carotene responds to waterlogging stress, however, remain elusive. In this study, we found that ß-carotene content and lycopene cyclase (TgLCYB1) expression, both in leaves and roots of Torreya grandis, were increased under waterlogging treatment. Subcellular localization assays indicated that TgLCYB1 was localized in the chloroplasts. Phenotypic, physiological, and metabolome analysis showed that overexpression of TgLCYB1 enhanced the tolerance of tomato plants to waterlogging stress. Furthermore, application of a LCYB enzyme inhibitor, 2-(4-chlorophenylthio)-triethylamine hydrochloride, markedly enhanced the sensitivity of T. grandis to waterlogging stress. In addition, yeast one-hybrid assay, the dual luciferase assay system, and real-time quantitative PCR indicated that waterlogging stress induced TgWRKY22 to increase TgLCYB1 expression by binding to the TgLCYB1 promoter. Collectively, our results indicated that TgWRKY22 positively regulated TgLCYB1 expression to improve the activities of antioxidant enzyme and increase the levels of some key metabolites, thereby relieving waterlogging-induced oxidative damage, and consequently modulating the waterlogging stress response. This study contributes to a more comprehensive understanding of carotenoid functions and the role LCYB genes play in plant stress response.


Assuntos
Taxaceae , beta Caroteno , Estresse Oxidativo , Estresse Fisiológico , Carotenoides
3.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686021

RESUMO

Accurate species identification is key to conservation and phylogenetic inference. Living plant collections from botanical gardens/arboretum are important resources for the purpose of scientific research, but the proportion of cultivated plant misidentification are un-tested using DNA barcodes. Here, we assembled the next-generation barcode (complete plastid genome and complete nrDNA cistron) and mitochondrial genes from genome skimming data of Torreya species with multiple accessions for each species to test the species discrimination and the misidentification proportion of cultivated plants used in Torreya studies. A total of 38 accessions were included for analyses, representing all nine recognized species of genus Torreya. The plastid phylogeny showed that all 21 wild samples formed species-specific clades, except T. jiulongshanensis. Disregarding this putative hybrid, seven recognized species sampled here were successfully discriminated by the plastid genome. Only the T. nucifera accessions grouped into two grades. The species identification rate of the nrDNA cistron was 62.5%. The Skmer analysis based on nuclear reads from genome skims showed promise for species identification with seven species discriminated. The proportion of misidentified cultivated plants from arboreta/botanical gardens was relatively high with four accessions (23.5%) representing three species. Interspecific relationships within Torreya were fully resolved with maximum support by plastomes, where Torreya jackii was on the earliest diverging branch, though sister to T. grandis in the nrDNA cistron tree, suggesting that this is likely a hybrid species between T. grandis and an extinct Torreya ancestor lineage. The findings here provide quantitative insights into the usage of cultivated samples for phylogenetic study.


Assuntos
Extinção Psicológica , Taxaceae , Filogenia , Jardinagem , Genes Mitocondriais
4.
Plant Physiol ; 193(2): 1161-1176, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37399247

RESUMO

Terpenes are volatile compounds responsible for aroma and the postharvest quality of commercially important xiangfei (Torreya grandis) nuts, and there is interest in understanding the regulation of their biosynthesis. Here, a transcriptomics analysis of xiangfei nuts after harvest identified 156 genes associated with the terpenoid metabolic pathway. A geranyl diphosphate (GPP) synthase (TgGPPS) involved in production of the monoterpene precursor GPP was targeted for functional characterization, and its transcript levels positively correlated with terpene levels. Furthermore, transient overexpression of TgGPPS in tobacco (Nicotiana tabacum) leaves or tomato (Solanum lycopersicum) fruit led to monoterpene accumulation. Analysis of differentially expressed transcription factors identified one basic helix-loop-helix protein (TgbHLH95) and one basic leucine zipper protein (TgbZIP44) as potential TgGPPS regulators. TgbHLH95 showed significant transactivation of the TgGPPS promoter, and its transient overexpression in tobacco leaves led to monoterpene accumulation, whereas TgbZIP44 directly bound to an ACGT-containing element in the TgGPPS promoter, as determined by yeast 1-hybrid test and electrophoretic mobility shift assay. Bimolecular fluorescence complementation, firefly luciferase complementation imaging, co-immunoprecipitation, and GST pull-down assays confirmed a direct protein-protein interaction between TgbHLH95 and TgbZIP44 in vivo and in vitro, and in combination these proteins induced the TgGPPS promoter up to 4.7-fold in transactivation assays. These results indicate that a TgbHLH95/TgbZIP44 complex activates the TgGPPS promoter and upregulates terpene biosynthesis in xiangfei nuts after harvest, thereby contributing to its aroma.


Assuntos
Taxaceae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nozes/metabolismo , Terpenos/metabolismo , Monoterpenos/metabolismo , Taxaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Hazard Mater ; 445: 130647, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056011

RESUMO

As a 2D nanomaterial, MXene (Ti3C2Tx) has shown enormous potential for use in fields such as biomedical and environmental pollution. However, the utilization of MXene materials in plants has received little attention thus far. The efficient use of MXene materials in agriculture and forestry is first highlighted in this study. Phenotypic and physiological analyses indicated that MXene application significantly enhanced the tolerance of Torreya grandis to Pb stress by reducing Pb accumulation. Furthermore, we illustrated two independent mechanisms of MXene material in reducing Pb accumulation in T. grandis: 1) MXene converted the available form of Pb into stable forms via its strong Pb adsorption ability, resulting in a decrease of the available form of Pb in soils, and 2) MXene application obviously increased the cell wall pectin content to restrict more Pb in the cell wall by regulating the expression of pectin synthesis/metabolism-related genes (TgPLL2, TgPLL11, TgPG5, TgPG30, TgGAUT3 and TgGAUT12) in T. grandis roots. Overall, this finding provides insight into the application of MXene material in modern agriculture and forestry, which will facilitate the rapid development of nanotechnology in sustainable agriculture and forestry.


Assuntos
Chumbo , Taxaceae , Chumbo/toxicidade , Titânio , Pectinas
6.
Nat Commun ; 14(1): 1315, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898990

RESUMO

Torreya plants produce dry fruits with assorted functions. Here, we report the 19-Gb chromosome-level genome assembly of T. grandis. The genome is shaped by ancient whole-genome duplications and recurrent LTR retrotransposon bursts. Comparative genomic analyses reveal key genes involved in reproductive organ development, cell wall biosynthesis and seed storage. Two genes encoding a C18 Δ9-elongase and a C20 Δ5-desaturase are identified to be responsible for sciadonic acid biosynthesis and both are present in diverse plant lineages except angiosperms. We demonstrate that the histidine-rich boxes of the Δ5-desaturase are crucial for its catalytic activity. Methylome analysis reveals that methylation valleys of the T. grandis seed genome harbor genes associated with important seed activities, including cell wall and lipid biosynthesis. Moreover, seed development is accompanied by DNA methylation changes that possibly fuel energy production. This study provides important genomic resources and elucidates the evolutionary mechanism of sciadonic acid biosynthesis in land plants.


Assuntos
Cycadopsida , Taxaceae , Cycadopsida/genética , Plantas , Ácidos Graxos Dessaturases
7.
Food Chem ; 405(Pt A): 134843, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36347203

RESUMO

Torreya grandis nut is a chief functional food in China consumed for centuries. Besides its rich protein composition, increasing studies are now focusing on T. grandis functional proteins that have not yet identified. In this study, liquid chromatography coupled with mass spectrometry detection of smaller and major proteins, revealed that the major peptide was 36935.00 Da. Proteome sequencing annotated 142 proteins in total. Bioactive proteins such as defensin 4 was annotated and its anti-microbial function was verified. Finally, functional oligopeptides were predicted by searching sequences of digested peptides in databases. Ten group of oligopeptides were suggested to exhibit antioxidant, Angiotensin-converting enzyme inhibition, anti-inflammatory. The predicted antioxidant activity was experimentally validated. It is interesting that a peptide GYCVSDNN digested from defensin 4 showed antioxidant activity. This study reports novel functional peptides from T. grandis nuts that have not been isolated and/or included as functional ingredients in nutraceuticals and in food industry.


Assuntos
Nozes , Taxaceae , Nozes/química , Antioxidantes/análise , Proteômica , Taxaceae/química , Oligopeptídeos/análise , Peptídeos/análise , Defensinas/análise
8.
Food Chem ; 398: 133859, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987001

RESUMO

Astringency removal is important for the quality of Torreya grandis nut and occurs after harvest. Here, we evaluated the effect of NaHCO3 treatment on astringency removal and compared the differential metabolites of the seed coat and kernel using a UHPLC QQQ-MS-based metabolomics approach. The result revealed the nut astringency was primarily enriched in the seed coat with more soluble tannins. The NaHCO3 treatment greatly shortened the de-astringency process, as indicated by a faster conversion of soluble tannins to insoluble tannins and more acetaldehyde production. Besides, a total of 293 metabolites, including 92 phenolic acids and 37 flavonoids, were tentatively characterized in the seed coat. A further comparative analysis of the metabolomics indicated epigallocatechin, gallocatechin, catechin, procyanidin B1, B2, B3 and C1 to be the major metabolites influenced by the NaHCO3 treatment. This study provides new insights regarding the metabolite differences of Torreya grandis nuts processed with different de-astringent treatments.


Assuntos
Adstringentes , Taxaceae , Metabolômica , Nozes/metabolismo , Taninos/metabolismo
9.
Food Chem ; 406: 134987, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36446278

RESUMO

Secondary metabolites are a group of small molecules with critical roles in plants fitness in addition to their potential bioactivities in humans. Most of these compounds are associated with the flavor and quality formation of fruits or nuts during the development or the postharvest stages. Change in metabolic profiles and shifts underpinning the post-ripening process in T. grandis nuts are not yet reported. In this study, a large scale untargeted metabolomics approach was employed in T. grandis nuts, revealing for a total of 140 differential accumulated metabolites. Among them, nearly 60% of metabolites belonging to terpenoids, coumarins and phenolic acids, and phytohormones were showed a gradual accumulation pattern, while most of compounds in flavonoids were decreased during post-ripening. An in-depth analysis of changes in these metabolite classes suggest a framework for post-ripening process effect associated with the postharvest quality of T. grandis nuts for the first time.


Assuntos
Nozes , Taxaceae , Humanos , Nozes/metabolismo , Metabolômica , Frutas/metabolismo , Metaboloma
10.
Food Chem ; 408: 135214, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565552

RESUMO

Amino acids play critical roles in physiological processes and also contribute significantly to fruit quality. In this study, the effect of exogenous ethylene on amino acids metabolism and related genes expression in Torreya grandis were investigated. The results revealed that ethylene treatment (3000 µL L-1 for 24 h) significantly increased amino acids level. Umami amino acids were distinctly upregulated in ethylene-treated versus control nuts, with glutamic and aspartic acids to demonstrate 1.9-fold and 2.1-fold increase. Transcriptome analysis revealed that deferentially expressed genes were mainly enriched in alanine aspartate and glutamate metabolism. RT-qPCR confirmed that ethylene treatment up-regulated expression of their biosynthesis genes (TgGOGAT1, TgAATC1, TgAATC4) concurrent with suppression of their degradation enzymes (TgGS2, TgGAD1, TgGAD3, TgASNS1). Ethylene treatment appears to promote umami taste-active amino acids and improve T. grandis nut quality post-harvest.


Assuntos
Aminoácidos , Taxaceae , Aminoácidos/análise , Paladar , Nozes/química , Etilenos/farmacologia , Ácido Aspártico
11.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080335

RESUMO

Torreya grandis is an important economic forestry product in China, whose seeds are often consumed as edible nuts, or used as raw materials for oil processing. To date, as an important by-product of Torreya grandis, comprehensive studies regarding the Torreya grandis seed coat phenolic composition are lacking, which greatly limits its in-depth use. Therefore, in the present study, the Torreya grandis seed coat was extracted by acid aqueous ethanol (TE), and NMR and UHPLC-MS were used to identify the major phenolics. Together with the already known phenolics including protocatechuic acid, catechin, epigallocatechin gallate, and epicatechin gallate, the unreported new compound 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid was discovered. The results of the antioxidant properties showed that both TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid exhibited strong ABTS, DPPH, and hydroxyl radical-scavenging activity, and significantly improved the O/W emulsion's oxidation stability. These results indicate that the TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid could possibly be used in the future to manufacture functional foods or bioactive ingredients. Moreover, further studies are also needed to evaluate the biological activity of TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid to increase the added value of Torreya grandis by-products.


Assuntos
Antioxidantes , Taxaceae , Antioxidantes/química , Etanol/análise , Fenóis/análise , Extratos Vegetais/química , Sementes/química , Taxaceae/química
12.
Sci Total Environ ; 849: 157832, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35932857

RESUMO

Torreya grandis (Torreya grandis cv. Merrillii) is a unique nut tree species in China. Currently, researches on Torreya grandis focus on nuts quality and yield, while few works are related to the soil quality of Torreya grandis plantation. In this study, the typical Torreya grandis production areas of Zhuji, Shengzhou, Keqiao and Dongyang cities along the Kuaiji Mountain were selected. A total of 121 topsoil samples (0-20 cm) were collected based on a grid of 1 km × 1 km. The results indicated that the average concentrations of Cd, Cr, Cu, As, Ni and Pb in soils were 0.12, 49.01, 27.95, 14.28, 26.97 and 40.28 mg kg-1, respectively. The concentrations of six heavy metals all exceeded the background values, and there were different degrees of pollution levels. The results of Moran's I indicated that the spatial high-high clusters of soil heavy metals were mainly distributed in Zhuji and the junction of Shengzhou and Keqiao. The partial least squares path analysis of structural equation modeling (PLS-SEM) showed that OM and soil nutrients had extremely significant effects on soil heavy metals. Sources identification of principle component analysis (PCA) and positive matrix factorization model (PMF) revealed that agricultural activities, natural factors and mining were the main sources of soil heavy metals. The human health risks caused by soil heavy metals pollution were generally acceptable based on Monte Carlo simulation method. For the heavy-metal polluted area, management measures should be considered in order to protect human health.


Assuntos
Metais Pesados , Poluentes do Solo , Taxaceae , Cádmio/análise , China , Monitoramento Ambiental/métodos , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise
13.
Phytochemistry ; 201: 113278, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716715

RESUMO

Twelve undescribed abietane-type diterpenoids, along with ten known analogues were isolated from the twigs and leaves of Torreya grandis var. merrillii Hu. Their structures were characterized by spectroscopic data analyses, single-crystal X-ray diffraction, and ECD spectra. Torgranols A-C possess three different architectures shaped via a common 6,7-seco-procedure and subsequent ring formations. In particular, torgranol A represents the first example of a 6,7-seco-abietane diterpenoid featuring a unique oxygen bridge between C-3 and C-6. The biosynthetic pathways for torgranols A-C were proposed. Some compounds displayed antimicrobial activities against Mycobacterium tuberculosis and/or Staphylococcus aureus.


Assuntos
Anti-Infecciosos , Diterpenos , Taxaceae , Abietanos/química , Abietanos/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Diterpenos/química , Folhas de Planta/química
14.
J Hazard Mater ; 436: 129181, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643006

RESUMO

Micro/nanoplastic has become an emerging pollutant of global concern. At present, ecotoxic researches on micro/nanoplastics mostly focus on marine aquatic organisms and freshwater algae. Research on the ecological impacts of plastics on higher terrestrial plants, especially on forest plants, is relatively limited. Torreya grandis cv. Merrillii, a species of conifer in the family Taxaceae, is a unique and economically valuable tree species in China. The physiological and biochemical responses of T. grandis seedlings to polystyrene nanoplastics (PSNPs) with a diameter of 100 nm were systematically studied inthe present study. The results showed that nanoplastics enhanced the accumulation of the thiobarbituric acid reactive substance and the activities of catalase and peroxidase. The concentrations of iron, sulfur, and zinc were reduced after nanoplastic exposure. PSNP treatment had an important effect on a series of chemical and genetic indicators of T. grandis, includingantioxidants, small RNA, gene transcription, protein expressions, and metabolite accumulation. Multi-omic analysis revealed that PSNPs modulate terpenoid- and flavonoid-biosynthesis pathways by regulating small RNA transcription and protein expression. Our study provided novelty insights into the responses of forest plants to nanoplastic treatment.


Assuntos
Poluentes Ambientais , Taxaceae , Antioxidantes/metabolismo , Microplásticos/toxicidade , Poliestirenos/toxicidade , RNA , Taxaceae/química , Taxaceae/genética , Taxaceae/metabolismo
15.
Sci Total Environ ; 837: 155573, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504392

RESUMO

Excessive nutrient inputs imperil the stability of forest ecosystems via modifying the interactions among soil properties, microbes, and plants, particularly in forests composed of cash crops that are under intensive disturbances of agricultural activities, such as Torreya grandis. Understanding the potential drivers of soil microbial community helps scientists develop effective strategies for balancing the protection and productivity of the ancient Torreya forest. Here, we assayed the link between plant and soil parameters and prokaryote communities in bulk soil and T. grandis rhizosphere in 900-year-old stands by detecting plant and soil properties in two independent sites in southeastern China. Our results showed no apparent influence of stand age on the compositions of prokaryote communities in bulk soil and T. grandis rhizosphere. In contrast, soil abiotic factors (i.e., soil pH) overwhelm plant characteristics (i.e., height, plant tissue carbon, nitrogen, and phosphorus content) and contribute most to the shift in prokaryote communities in bulk soil and T. grandis rhizosphere. Soil pH leads to an increase in microbiota alpha diversity in both compartments. With the help of a random forest, we found a critical transition point of pH (pH = 4.9) for the dominance of acidic and near-neutral bacterial groups. Co-occurrence network analysis further revealed a substantially simplified network in plots with a pH of <4.9 versus samples with a pH of ≥4.9, indicating that soil acidification induces biodiversity loss and disrupts potential interactions among soil microbes. Our findings provide empirical evidence that soil abiotic properties nearly completely offset the roles of host plants in the assembly and potential interactions of rhizosphere microorganisms. Hence, reduction in inorganic fertilization and proper liming protocols should be seriously considered by local farmers to protect ancient Torreya forests.


Assuntos
Microbiota , Taxaceae , Produtos Agrícolas , Rizosfera , Solo/química , Microbiologia do Solo
16.
Oxid Med Cell Longev ; 2022: 4472751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464771

RESUMO

Background: Recent experimental studies have shown that vegetable oil supplementation ameliorates high-fat diet- (HFD-) induced hyperlipidemia and oxidative stress in mice via modulating hepatic lipid metabolism and the composition of the gut microbiota. The aim of this study was to investigate the efficacy of the Torreya grandis kernel oil (TKO) rich in unpolysaturated fatty acid against hyperlipidemia and gain a deep insight into its potential mechanisms. Methods: Normal mice were randomly divided into three groups: ND (normal diet), LO (normal diet supplement with 4% TKO), and HO (normal diet supplement with 8% TKO). Hyperlipidemia mice were randomly divided into two groups: HFN (normal diet) and HFO (normal diet supplement with 8% TKO). Blood biochemistry and histomorphology were observed; liver RNA-seq, metabolomics, and gut 16S rRNA were analyzed. Results: Continuous supplementation of TKO in normal mice significantly ameliorated serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) accumulation, decreased blood glucose and malondialdehyde (MDA), and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. According to GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most differentially expressed genes (DEGs) were significantly enriched in the biosynthesis of unsaturated fatty acid pathways, and significantly changed metabolites (SCMs) might be involved in the metabolism of lipids. High-dose TKO improved gut alpha diversity and beta diversity showing that the microbial community compositions of the five groups were different. Conclusion: Supplementation of TKO functions in the prevention of hyperlipidemia via regulating hepatic lipid metabolism and enhancing microbiota richness in normal mice. Our study is the first to reveal the mechanism of TKO regulating blood lipid levels by using multiomics and promote further studies on TKO for their biological activity.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Taxaceae , Animais , HDL-Colesterol , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/metabolismo , Taxaceae/metabolismo
17.
Phytochemistry ; 198: 113161, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35283166

RESUMO

A phytochemical investigation on the MeOH extract of the leaves and twigs of the endangered conifer Torreya jackii Chun led to the isolation and characterization of 21 structurally diverse diterpenoids. Among them, six are previously undescribed, including four abietane-type (torreyins A-D, resp.) and two labdane-type diterpenoids (torreyins E and F). Their structures and absolute configurations were determined by a combination of spectroscopic methods, calculated/experimental electronic circular dichroism (ECD) data, and single-crystal X-ray diffraction analyses. In particular, torreyins A-C are rare 11,12-seco-abietane type diterpenoids possessing a dilactone moiety, and their biosynthetic pathway starting from a co-occurring abietane derivative (i.e., cyrtophyllone B) was briefly proposed. Among the isolates, 7-oxo-dehydroabietic acid and 15-methoxy-7,13-abietadien-18-oic acid showed considerable inhibitory effects against acetyl-coenzyme A carboxylase 1 (ACC1) and protein tyrosine phosphatase 1 B (PTP1B), with IC50 values of 3.1 and 6.8 µM, respectively.


Assuntos
Diterpenos , Taxaceae , Traqueófitas , Diterpenos/química , Estrutura Molecular , Compostos Fitoquímicos/química , Folhas de Planta/química
18.
Food Chem ; 384: 132454, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35228003

RESUMO

The seeds of Torreya grandis are necessary to go through a ripening process, which eventually leads to nutrition conversion and the production of edible nuts. However, the molecular basis of nutrition conversion remains unclear. Here, transcriptome sequencing was performed on seeds treated with different temperature and humidity. A total of 881 unigenes related to nutrition conversion were identified. The correlations between nutrient content and gene expression suggested that sucrose phosphate synthase (SPS), dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex (DLST), glycerol-3-phosphate acyltransferase (GPAT) and Pyruvate kinase (PK) may play key roles in nutrition conversion. Transient over-expression of TgDLST, TgPK and TgGPAT in tobacco leaves promoted nutritional conversion. Moreover, enzyme activity analysis indicated that diacylglycerol acyltransferase (DGAT) and pyruvate dehydrogenase (PDH) activities may also accelerate the nutritional conversion. This study uncovers the molecular basis of nutrition conversion in T. grandis seeds, which critical for shortening the time of nutrition conversion.


Assuntos
Nozes , Taxaceae , Umidade , Nozes/química , Folhas de Planta , Sementes/genética , Taxaceae/química
19.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159241

RESUMO

To study the photosynthetic energy mechanism and electron transfer in yellow leaves, transcriptomics combined with physiological approaches was used to explore the mechanism of the yellow leaf mutant Torreya grandis 'Merrillii'. The results showed that chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm), and the parameters related to the OJ phase of fluorescence (φEo, φRo) were all decreased significantly in mutant-type T. grandis leaves. The efficiency needed for an electron to be transferred from the reduced carriers between the two photosystems to the end acceptors of the PSI (δRo) and the quantum yield of the energy dissipation (φDo) were higher in the leaves of mutant-type T. grandis compared to those in wild-type leaves. Analysis of the prompt fluorescence kinetics and modulated 820 nm reflection showed that the electron transfer of PSII was decreased, and PSI activity was increased in yellow T. grandis leaves. Transcriptome data showed that the unigenes involved in chlorophyll synthesis and the photosynthetic electron transport complex were downregulated in the leaves of mutant-type T. grandis compared to wild-type leaves, while there were no observable changes in carotenoid content and biosynthesis. These findings suggest that the downregulation of genes involved in chlorophyll synthesis leads to decreased chlorophyll content, resulting in both PSI activity and carotenoids having higher tolerance when acting as photo-protective mechanisms for coping with chlorophyll deficit and decrease in linear electron transport in PSII.


Assuntos
Taxaceae , Transcriptoma , Carotenoides , Clorofila , Clorofila A , Fluorescência , Folhas de Planta/genética , Transcriptoma/genética
20.
Food Chem ; 379: 132078, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063846

RESUMO

Torreya grandis has high economic and nutritional value due to the high nutrients in its kernels. The kernels of different development stages vary enormously in their amino acids content. However, the molecular basis and the regulatory mechanism of amino acid biosynthesis remain unclear. Here, transcriptome and metabolome analysis were performed. Correlation analysis result showed that 4 unigenes were significantly and positively correlated with at least 10 amino acids. The full length CDS of 2 unigenes (TgDAHP2 and TgASA1) were successfully cloned from the 4 unigenes for DAHP, ASA and CITS. Subcelluar localization analysis showed that both TgDAHP2 and TgASA1 were localized to the chloroplast. Overexpression of TgDAHP2 and TgASA1 in Arabidopsis can greatly increase the content of most amino acids. Moreover, 3 transcription factors were found to positively regulate the expression of TgASA1. This research contributes to understand the molecular regulatory mechanisms of amino acid biosynthesis in T. grandis.


Assuntos
Taxaceae , Transcriptoma , Aminoácidos/genética , Cloroplastos , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...