Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Open Vet J ; 14(5): 1098-1102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938427

RESUMO

Background: Young farm animals are susceptible to opportunistic infections which may cause economic losses due to mortality and poor weight gain. The development of antimicrobial resistance and the desire to improve therapy efficacy and safety are the reasons to seek for new antibacterial drugs ensuring rapid recovery with minimum adverse events. Aim: To estimate the efficacy of DOKSI AVZ 500 in respiratory pathologies in young pigs. Methods: The study was conducted in 65-70-day-old Yorkshire piglets with signs of bacterial respiratory pathologies. The animals were treated with the test drug for 3 or 5 days. The reference group received TETRAMAX 500 which is similar to the test drug in terms of chemical structure, mechanism of action, and activity spectrum. The animal's status was assessed using clinical examination, clinical blood count, and bacteriological tests. Results: Both test and reference drugs were well tolerated and ensured the animal recovery within about 4 days. The recovery was accompanied by normalization of hematological parameters and flora composition. The bacterium associated with the disease development, Streptococcus suis, was virtually completely eliminated in all groups. No adverse events were noted. After the treatment, all the animals readily gained weight and live market quality. Conclusion: DOKSI AVZ 500 was a highly efficient therapy for respiratory pathologies caused by the resident opportunistic flora in piglets. It has also shown noninferiority vs. TETRAMAX 500 in terms of all the health-related parameters and thus can be recommended for introduction in veterinary practice in pig farms.


Assuntos
Antibacterianos , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Antibacterianos/uso terapêutico , Infecções Respiratórias/veterinária , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Feminino , Masculino , Tilosina/análogos & derivados
2.
BMC Vet Res ; 20(1): 251, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849822

RESUMO

AIM OF THE WORK: The study was conducted to evaluate the influence of theophylline pre-treatment on serum pharmacokinetics and milk elimination of tylosin following single intramuscular (IM) administrations in lactating goats. METHODS AND RESULTS: In a cross-over study, tylosin was injected via intramuscular (IM) at a single dose of 15 mg/kg b.wt. After a one-month washout period goats received theophylline at a daily IM dose of 2 mg/kg b.wt. for seven consecutive days then tylosin was injected IM dose of 15 mg/kg b.wt. two hours after the last theophylline dosing. Blood samples were collected before and at 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, and 24 h post-injection. Samples were left to clot and then centrifuged to yield serum. Milk samples were collected before and at 0.5, 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h post-injection from each goat by hand milking. Tylosin serum concentrations were determined by high-performance liquid chromatography (HPLC). Tylosin concentrations versus time were analyzed by a noncompartmental method. Tylosin Cmax significantly declined from 1.73 ± 0.10 to 1.01 ± 0.11 µg/ml, and attained Tmax values of 2 and 1 h, respectively in theophylline-pretreated goats. Moreover, theophylline pretreatment significantly shortened the elimination half-life (t1/2el) from 6.94 to 1.98 h, t1/2ka from 0.62 to 0.36 h and the mean residence time (MRT) from 8.02 to 4.31 h, also Vz/F and AUCs decreased from 11.91 to 7.70 L/kg and from 12.64 to 4.57 µg*h/ml, respectively, consequently, theophylline enhanced the clearance (Cl/F) of tylosin from the body. Similarly, tylosin milk concentrations were significantly lower in theophylline-pretreated goats than in goats that received tylosin alone and were detected up to 24 and 72 h in both groups, respectively. Moreover, the t1/2el and AUCs were significantly decreased from 14.68 ± 1.97 to 4.72 ± 0.48 h, and from 181 to 67.20 µg*h/ml, respectively. CONCLUSIONS: The withdrawal period for tylosin in goat milk is at least 72 h. Theophylline pretreatment significantly decreases serum and milk tylosin concentrations to subtherapeutic levels, which could have serious clinical consequences such as failure of therapy. This means that after administering tylosin to goats, milk from these animals should not be consumed for at least 96 h to ensure that the milk is free from residues of the antibiotic.


Assuntos
Antibacterianos , Estudos Cross-Over , Cabras , Lactação , Leite , Teofilina , Tilosina , Animais , Cabras/metabolismo , Teofilina/farmacocinética , Teofilina/administração & dosagem , Teofilina/sangue , Tilosina/farmacocinética , Tilosina/administração & dosagem , Tilosina/sangue , Injeções Intramusculares/veterinária , Leite/química , Feminino , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Meia-Vida , Área Sob a Curva
3.
Vet J ; 305: 106130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734403

RESUMO

Tildipirosin is a macrolide antimicrobial. It is authorised for the treatment and prevention of respiratory disease in cattle and pigs. There are no data on its administration in crocodiles. Therefore, this study evaluated the disposition kinetics of tildipirosin after intravenous (dose: 2 mg/kg) and intramuscular (doses: 2 and 4 mg/kg) administration in two crocodilian species (estuarine and freshwater; n = 5). Tildipirosin plasma concentrations were quantified by a validated HPLC method. Plasma concentrations obtained at each extraction time were analysed by non-compartmental methods. In the estuarine and freshwater crocodiles, the apparent volumes of distribution of tildipirosin after intravenous administration were 0.36 ± 0.10 and 1.48 ± 0.26 L/kg, respectively. These values, suggesting poorer tissue distribution, were much lower than those obtained in mammals. There was complete bioavailability of tildipirosin after intramuscular route at a dose of 2 mg/kg; however, at a dose of 4 mg/kg the bioavailability decreased by about 20-25 %. Furthermore, the pharmacokinetics of tildipirosin were markedly different in the two crocodilian species. Considering a MIC of 0.5 µg/mL, the surrogate marker AUC0-24/MIC indicates that tildipirosin would greatly exceed the value of 65 h for both crocodile species and dose levels tested. This suggests that both doses (2 and 4 mg/kg) may provide a bactericidal effect. Therefore, based on the absence of adverse reactions following the administration of tildipirosin in both crocodilian species, and considering its favourable pharmacokinetic properties, tildipirosin may be useful in treating infections in these reptiles.


Assuntos
Jacarés e Crocodilos , Tilosina , Animais , Tilosina/análogos & derivados , Tilosina/farmacocinética , Tilosina/administração & dosagem , Injeções Intramusculares/veterinária , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Injeções Intravenosas/veterinária , Água Doce , Meia-Vida , Disponibilidade Biológica , Área Sob a Curva
4.
PLoS One ; 19(5): e0304113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820335

RESUMO

Microbial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.9% degradation efficiency in 1 d and could be reused for four cycles, with > 93% degradation efficiency per cycle. In a wastewater application, the immobilized bacterial alliance degraded 67.0% TYL in 9 d. There were significant advantages for the immobilized bacterial alliance at pH 5 or 9, with 20 or 40 g/L NaCl, or with 10 or 50 mg/L doxycycline. In summary, in this study, a bacterial consortium with TYL degradation ability was constructed using PVA-SA-AC as an immobilized carrier, and the application effect was evaluated on farm wastewater with a view to providing application guidance in environmental remediation.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Álcool de Polivinil , Tilosina , Águas Residuárias , Águas Residuárias/química , Águas Residuárias/microbiologia , Álcool de Polivinil/química , Células Imobilizadas/metabolismo , Alginatos/química , Alginatos/metabolismo , Poluentes Químicos da Água/metabolismo , Klebsiella pneumoniae/metabolismo , Antibacterianos , Carvão Vegetal/química
5.
Sci Rep ; 14(1): 12575, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822086

RESUMO

This study investigated batch-fed vermicomposting of cow manure, with a specific focus on assessing the effects of tylosin on the weight of earthworms and the overall quality of the resulting manure. Five reactors, including three concentrations of tylosin (50, 100, and 150 mg/kg) and two control reactors, were employed. Residual tylosin concentrations were measured using high-performance liquid chromatography (HPLC). Quality parameters such as pH, temperature, volatile solids (VS), organic carbon content (OCC), electrical conductivity (EC), ash content, C/N ratio, total Kjeldahl nitrogen (TKN), and microbial content were evaluated. The toxicity and maturity of vermicompost were assessed by determining the germination index (GI). The study also monitored variations in the earthworm's weight. The results demonstrated a decreasing trend in VS, OCC, C/N, and fecal coliforms, along with increased pH, EC, ash content, and TKN during the vermicomposting process. Furthermore, investigations revealed significant reductions in the reactors with tylosin concentrations of 50, 100, and 150 mg/kg, resulting in the removal of 98%, 90.48%, and 89.38% of the initial tylosin, respectively. This result confirms the faster removal of tylosin in reactors with lower concentrations. Degradation of tylosin also conforms to first-order kinetics. The findings showed a significant influence of tylosin on the weight of Eisenia fetida earthworms and the lowest antibiotic concentration led to the highest weight gain. Finally, the high percentage of germination index (90-100%) showed that the quality and maturity of vermicompost is by national and international standards.


Assuntos
Compostagem , Esterco , Oligoquetos , Tilosina , Animais , Tilosina/farmacologia , Esterco/análise , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Bovinos , Compostagem/métodos , Solo/química , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
6.
J Vet Pharmacol Ther ; 47(4): 257-265, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598665

RESUMO

Tilmicosin, a macrolide antibiotic, has the potential to treat bacterial infections in donkeys. However, the pharmacokinetics of tilmicosin in donkeys have not been reported. The aim of this study was to investigate the pharmacokinetics of tilmicosin in donkey plasma, urine, and feces after a single intragastric administration to determine the suitability of tilmicosin for donkeys. A total of 5 healthy male donkeys with similar body weights were selected. The donkeys were administered a single dose of 10 mg · kg-1 body weight (BW) tilmicosin by gavage. The concentrations of tilmicosin in plasma, urine, and feces were determined. The results showed that after a single intragastric administration of 10 mg · kg-1 body weight, tilmicosin in donkey plasma reached a maximum concentration of 11.23 ± 5.37 mg · L-1 at 0.80 ± 0.10 h, with a half-life of 14.49 ± 7.13 h, a mean residence time of 28.05 ± 3.05 h, a Cl/F of 0.48 ± 0.18 L · kg-1 · h-1, and a Vd/F of 9.28 ± 2.63 Lkg-1. The percentage of tilmicosin excreted through the urine of donkeys is 2.47%, and the percentage excreted through the feces is 66.43%. Our study provides data to inform the use of tilmicosin in donkeys.


Assuntos
Antibacterianos , Equidae , Fezes , Tilosina , Animais , Equidae/sangue , Tilosina/farmacocinética , Tilosina/análogos & derivados , Tilosina/urina , Tilosina/administração & dosagem , Tilosina/sangue , Fezes/química , Masculino , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/urina , Antibacterianos/sangue , Meia-Vida , Área Sob a Curva , Administração Oral
7.
Bioresour Technol ; 401: 130715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641304

RESUMO

To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.


Assuntos
Antibacterianos , Fermentação , Espectinomicina , Tilosina , Tilosina/farmacologia , Antibacterianos/farmacologia , Espectinomicina/farmacologia , Micélio/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Biodegradação Ambiental , Genes Bacterianos
8.
J Environ Sci (China) ; 142: 182-192, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527883

RESUMO

The degradation of tilmicosin (TLM), a semi-synthetic 16-membered macrolide antibiotic, has been receiving increasing attention. Conventionally, there are three tilmicosin degradation methods, and among them microbial degradation is considered the best due to its high efficiency, eco-friendliness, and low cost. Coincidently, we found a new strain, Glutamicibacter nicotianae sp. AT6, capable of degrading high-concentration TLM at 100 mg/L with a 97% removal efficiency. The role of tryptone was as well investigated, and the results revealed that the loading of tryptone had a significant influence on TLM removals. The toxicity assessment indicated that strain AT6 could efficiently convert TLM into less-toxic substances. Based on the identified intermediates, the degradation of TLM by AT6 processing through two distinct pathways was then proposed.


Assuntos
Micrococcaceae , Tilosina , Tilosina/análogos & derivados , Águas Residuárias , Tilosina/toxicidade , Antibacterianos/metabolismo , Biodegradação Ambiental
9.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542095

RESUMO

Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine.


Assuntos
Antibacterianos , Animais de Estimação , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Animais de Estimação/microbiologia , Escherichia coli , Tilosina , Antagonistas de Receptores de Angiotensina , Proteômica , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Imipenem , Ecossistema , Testes de Sensibilidade Microbiana
10.
J Hazard Mater ; 469: 134026, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493620

RESUMO

The purpose of the study was to evaluate the effects of using of ozonation to remove antibiotics used, among others, in veterinary medicine, from the aqueous environment. The effect of this process on the degradation, mineralisation and ecotoxicity of aqueous solutions of ampicillin, doxycycline, tylosin, and sulfathiazole was investigated. Microbiological MARA® bioassay and two in silico methods were used for the ecotoxicity assessment. Ozonation was an effective method for the degradation of the antibiotics studied and the reduction in ecotoxicity of the solutions. However, after ozonation, the solutions contained large amounts of organic products, including compounds much less susceptible to ozonation than the initial antibiotics. Structures of 14, 12, 40 and 10 degradation products for ampicillin, doxycycline, tylosin, and sulfathiazole, respectively, were proposed. It was confirmed that ozone plays a greater role than hydroxyl radicals in the degradation of these antibiotics, with the exception of TYL. The use of ozonation to obtain a high degree of mineralisation is unfavourable and it is suggested to combine ozonation with biodegradation. The pre-ozonation will cause decomposition of antibiotic pharmacophores, which significantly reduces the risk of spread of antimicrobial resistance in the active biocenosis of wastewater treatment plants.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Antibacterianos/toxicidade , Antibacterianos/química , Doxiciclina , Tilosina , Ampicilina , Sulfatiazol , Ozônio/química , Purificação da Água/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
11.
J Antibiot (Tokyo) ; 77(5): 331-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467778

RESUMO

The emergence and spread of antimicrobial resistance are global threats. Pseudomonas aeruginosa (P. aeruginosa) is responsible for a substantial proportion of this global health issue because of its intrinsic resistance to many antibiotics due to the impermeability of its outer membrane and its multidrug efflux pump systems. Therefore, therapeutic drugs are limited, and the development of new drugs is extremely challenging. As an alternative approach, we focused on a combinational treatment strategy and found that 5-O-mycaminosyltylonolide (OMT) showed potent antibacterial activity against P. aeruginosa in the presence of an efflux pump inhibitor, phenylalanine-arginine beta-naphthylamide (PAßN). In this report, we prepared a PAßN derivative and compared the potentiation activity of OMT by PAßNs against multidrug-resistant P. aeruginosa clinical isolates.


Assuntos
Antibacterianos , Dipeptídeos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Tilosina/análogos & derivados , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Dipeptídeos/farmacologia , Dipeptídeos/química , Sinergismo Farmacológico , Humanos
12.
Langmuir ; 40(9): 4860-4870, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394629

RESUMO

Tildipirosin has no significant inhibitory effect on intracellular bacteria because of its poor membrane permeability. To this end, tildipirosin-loaded xanthan gum-gelatin composite nanogels were innovatively prepared to improve the cellular uptake efficiency. The formation of the nanogels via interactions between the positively charged gelatin and the negatively charged xanthan gum was confirmed by powder X-ray diffraction and Fourier transform infrared. The results indicate that the optimal tildipirosin composite nanogels possessed a 3D network structure and were shaped like a uniformly dispersed ellipse, and the particle size, PDI, and ζ potential were 229.4 ± 1.5 nm, 0.26 ± 0.04, and -33.2 ± 2.2 mV, respectively. Interestingly, the nanogels exhibited gelatinase-responsive characteristics, robust cellular uptake via clathrin-mediated endocytosis, and excellent sustained release. With those pharmaceutical properties provided by xanthan gum-gelatin composite nanogels, the anti-Staphylococcus aureus activity of tildipirosin was remarkably amplified. Further, tildipirosin composite nanogels demonstrated good biocompatibility and low in vivo and in vitro toxicities. Therefore, we concluded that tildipirosin-loaded xanthan gum-gelatin composite nanogels might be employed as a potentially effective gelatinase-responsive drug delivery for intracellular bacterial infection.


Assuntos
Gelatina , Gelatinases , Polissacarídeos Bacterianos , Tilosina/análogos & derivados , Nanogéis , Gelatina/química
13.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373802

RESUMO

Liver abscesses (LA) resulting from bacterial infection in cattle pose a significant global challenge to the beef and dairy industries. Economic losses from liver discounts at slaughter and reduced animal performance drive the need for effective mitigation strategies. Tylosin phosphate supplementation is widely used to reduce LA occurrence, but concerns over antimicrobial overuse emphasize the urgency to explore alternative approaches. Understanding the microbial ecology of LA is crucial to this, and we hypothesized that a reduced timeframe of tylosin delivery would alter LA microbiomes. We conducted 16S rRNA sequencing to assess severe liver abscess bacteriomes in beef cattle supplemented with in-feed tylosin. Our findings revealed that shortening tylosin supplementation did not notably alter microbial communities. Additionally, our findings highlighted the significance of sample processing methods, showing differing communities in bulk purulent material and the capsule-adhered material. Fusobacterium or Bacteroides ASVs dominated LA, alongside probable opportunistic gut pathogens and other microbes. Moreover, we suggest that liver abscess size correlates with microbial community composition. These insights contribute to our understanding of factors impacting liver abscess microbial ecology and will be valuable in identifying antibiotic alternatives. They underscore the importance of exploring varied approaches to address LA while reducing reliance on in-feed antibiotics.


Assuntos
Abscesso Hepático , Microbiota , Bovinos , Animais , Tilosina/farmacologia , RNA Ribossômico 16S/genética , Abscesso Hepático/veterinária , Abscesso Hepático/epidemiologia , Abscesso Hepático/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Suplementos Nutricionais/análise , Ração Animal/análise
14.
Poult Sci ; 103(4): 103485, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335668

RESUMO

Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.


Assuntos
Anti-Infecciosos , Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animais , Humanos , Galinhas/genética , Tailândia/epidemiologia , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia , Tilosina , Farmacorresistência Bacteriana/genética , Campylobacter/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma/veterinária , Testes de Sensibilidade Microbiana/veterinária
15.
Parasit Vectors ; 17(1): 59, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341599

RESUMO

BACKGROUND: Toxoplasma gondii is an important protozoan pathogen with medical and veterinary importance worldwide. Drugs currently used for treatment of toxoplasmosis are less effective and sometimes cause serious side effects. There is an urgent need for the development of more effective drugs with relatively low toxicity. METHODS: The effect of tylosin on the viability of host cells was measured using CCK8 assays. To assess the inhibition of tylosin on T. gondii proliferation, a real-time PCR targeting the B1 gene was developed for T. gondii detection and quantification. Total RNA was extracted from parasites treated with tylosin and then subjected to transcriptome analysis by RNA sequencing (RNA-seq). Finally, murine infection models of toxoplasmosis were used to evaluate the protective efficacy of tylosin against T. gondii virulent RH strain or avirulent ME49 strain. RESULTS: We found that tylosin displayed low host toxicity, and its 50% inhibitory concentration was 175.3 µM. Tylsoin also inhibited intracellular T. gondii tachyzoite proliferation, with a 50% effective concentration of 9.759 µM. Transcriptome analysis showed that tylosin remarkably perturbed the gene expression of T. gondii, and genes involved in "ribosome biogenesis (GO:0042254)" and "ribosome (GO:0005840)" were significantly dys-regulated. In a murine model, tylosin treatment alone (100 mg/kg, i.p.) or in combination with sulfadiazine sodium (200 mg/kg, i.g.) significantly prolonged the survival time and raised the survival rate of animals infected with T. gondii virulent RH or avirulent ME49 strain. Meanwhile, treatment with tylosin significantly decreased the parasite burdens in multiple organs and decreased the spleen index of mice with acute toxoplasmosis. CONCLUSIONS: Our findings suggest that tylosin exhibited potency against T. gondii both in vitro and in vivo, which offers promise for treatment of human toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Animais , Camundongos , Tilosina/farmacologia , Tilosina/uso terapêutico , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Sulfadiazina/farmacologia , Sulfadiazina/uso terapêutico , Baço
16.
Vet Microbiol ; 291: 110029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364466

RESUMO

The antimicrobial tylosin is commonly used to control mycoplasma infections, sometimes in combination with vaccination. However, the efficacy of a live mycoplasma vaccine, when combined with subsequent antimicrobial treatment, against the effects of subsequent infection with a virulent strain is unknown. This study employed differential gene expression analysis to evaluate the effects of tylosin on the protection provided by the live attenuated Vaxsafe MG ts-304 vaccine, which has been shown to be safe and to provide long-term protective immunity against infection with Mycoplasma gallisepticum. The transcriptional profiles of the tracheal mucosa revealed significantly enhanced inflammation, immune cell proliferation and adaptive immune responses in unvaccinated, untreated birds and in unvaccinated birds treated with tylosin 2 weeks after infection with virulent M. gallisepticum. These responses, indicative of the typical immune dysregulation caused by infection with M. gallisepticum, were less severe in the unvaccinated, tylosin-treated birds than in the unvaccinated, untreated birds. This was attributable to the effect of residual levels of tylosin in the tracheal mucosa on replication of virulent M. gallisepticum. These responses were not detected in vaccinated, tylosin-treated birds or in vaccinated, untreated birds after infection. The tracheal mucosal transcriptional profiles of these birds resembled those of unvaccinated, untreated, uninfected birds, suggesting a rapid and protective secondary immune response and effective vaccination. Overall, these results show that, although tylosin treatment reduced the duration of immunity, the initial protective immunity induced by Vaxsafe MG ts-304 lasted for at least 22 weeks after vaccination, even after the administration of tylosin for 16 weeks following vaccination.


Assuntos
Anti-Infecciosos , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Tilosina/farmacologia , Vacinas Bacterianas , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Vacinas Atenuadas
17.
Sci Rep ; 14(1): 1954, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263184

RESUMO

Probiotics are widely used in agriculture including commercial beekeeping, but there is little evidence supporting their effectiveness. Antibiotic treatments can greatly distort the gut microbiome, reducing its protective abilities and facilitating the growth of antibiotic resistant pathogens. Commercial beekeepers regularly apply antibiotics to combat bacterial infections, often followed by an application of non-native probiotics advertised to ease the impact of antibiotic-induced gut dysbiosis. We tested whether probiotics affect the gut microbiome or disease prevalence, or rescue the negative effects of antibiotic induced gut dysbiosis. We found no difference in the gut microbiome or disease markers by probiotic application or antibiotic recovery associated with probiotic treatment. A colony-level application of the antibiotics oxytetracycline and tylosin produced an immediate decrease in gut microbiome size, and over the longer-term, very different and persistent dysbiotic effects on the composition and membership of the hindgut microbiome. Our results demonstrate the lack of probiotic effect or antibiotic rescue, detail the duration and character of dysbiotic states resulting from different antibiotics, and highlight the importance of the gut microbiome for honeybee health.


Assuntos
Oxitetraciclina , Probióticos , Abelhas , Animais , Disbiose , Antibacterianos , Tilosina
18.
Res Vet Sci ; 168: 105152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219471

RESUMO

Pleuromutilins (tiamulin and valnemulin) are often used to treat swine dysentery due to recurrent resistance to macrolides and lincosamides. Recently, reduced susceptibility of B. hyodysenteriae to pleuromutilin has been reported. 536 strains of B. hyodysenteriae were isolated from symptomatic pigs weighing 30-150 kg in northern Italy between 2005 and 2022. B. hyodysenteriae was isolated by standard methods and confirmed by PCR. The minimum inhibitory concentration (MIC) to doxycycline, lincomycin, tiamulin, tylosin, tylvalosine and valnemulin was evaluated according to CLSI procedures and MIC data were reported as MIC 50 and MIC 90. The temporal trend of the MIC values was evaluated by dividing the data into two groups (2005-2013 and 2014-2022). Comparison of the distribution in frequency classes in the two periods was performed using Pearson's chi-squared test (p < 0.01). MIC 50 was close to the highest values tested for lincomycin and tylosin, while MIC 90 was close to the highest values tested for all antibiotics. 71.7% of the strains were susceptible to tylvalosin, while 75%-80.4% had reduced susceptibility to valnemulin and tiamulin, respectively. The difference in the distribution of MIC classes was statistically significant in the two periods for doxycycline, tiamulin, tylvalosin and valnemulin, and more MIC classes above the epidemiological cut-off were observed in 2014-2022 compared with 2005-2013. The evaluation of the trends during the period considered shows a decreasing rate of wild-type strains with MIC values below the epidemiological cut-off over time and confirms the presence of resistant strains in northern Italy.


Assuntos
Brachyspira hyodysenteriae , Brachyspira , Doenças dos Suínos , Tilosina/análogos & derivados , Animais , Suínos , Brachyspira hyodysenteriae/genética , Doxiciclina , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/epidemiologia , Antibacterianos/farmacologia , Pleuromutilinas , Lincomicina , Testes de Sensibilidade Microbiana/veterinária , Itália , Diterpenos
19.
Nat Prod Res ; 38(10): 1652-1661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37226502

RESUMO

An experimental study has been conducted to investigate the efficacy of geraniol (GNL) isolated from lemomgrass in protecting against cardiac toxicity induced by tilmicosin (TIL) in albino mice. Compared to TIL-treated mice, those supplemented with GNL had a thicker left ventricular wall and a smaller ventricular cavity. Studies of TIL animals treated with GNL showed that their cardiomyocytes had markedly changed in diameter and volume, along with a reduction in numerical density. After TIL induction, animals showed a significant increase in the protein expression of TGF-ß1, TNF-α, nuclear factor kappa B (NF-kB), by 81.81, 73.75 and 66.67%, respectively, and hypertrophy marker proteins ANP, BNP, and calcineurin with respective percentages of 40, 33.34 and 42.34%. Interestingly, GNL significantly decreased the TGF-ß1, TNF-α, NF-kB, ANP, BNP, and calcineurin levels by 60.94, 65.13, 52.37, 49.73, 44.18 and 36.84%, respectively. As observed from histopathology and Masson's trichrome staining, supplementation with GNL could rescue TIL-induced cardiac hypertrophy. According to these results, GNL may protect the heart by reducing hypertrophy in mice and modulating biomarkers of fibrosis and apoptosis.


Assuntos
Monoterpenos Acíclicos , Cymbopogon , Tilosina/análogos & derivados , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacologia , Estresse Oxidativo , Miócitos Cardíacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia
20.
J Vet Diagn Invest ; 36(1): 62-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968893

RESUMO

Swine dysentery, caused by Brachyspira hyodysenteriae and the newly recognized Brachyspira hampsonii in grower-finisher pigs, is a substantial economic burden in many swine-rearing countries. Antimicrobial therapy is the only commercially available measure to control and prevent Brachyspira-related colitis. However, data on antimicrobial susceptibility trends and genetic diversity of Brachyspira species from North America is limited. We evaluated the antimicrobial susceptibility profiles of U.S. Brachyspira isolates recovered between 2013 and 2022 to tiamulin, tylvalosin, lincomycin, doxycycline, bacitracin, and tylosin. In addition, we performed multilocus sequence typing (MLST) on 64 B. hyodysenteriae isolates. Overall, no distinct alterations in the susceptibility patterns over time were observed among Brachyspira species. However, resistance to the commonly used antimicrobials was seen sporadically with a higher resistance frequency to tylosin compared to other tested drugs. B. hampsonii was more susceptible to the tested drugs than B. hyodysenteriae and B. pilosicoli. MLST revealed 16 different sequence types (STs) among the 64 B. hyodysenteriae isolates tested, of which 5 STs were previously known, whereas 11 were novel. Most isolates belonged to the known STs: ST93 (n = 32) and ST107 (n = 13). Our findings indicate an overall low prevalence of resistance to clinically important antimicrobials other than tylosin and bacitracin, and high genetic diversity among the clinical Brachyspira isolates from pigs in the United States during the past decade. Further molecular, epidemiologic, and surveillance studies are needed to better understand the infection dynamics of Brachyspira on swine farms and to help develop effective control measures.


Assuntos
Anti-Infecciosos , Brachyspira hyodysenteriae , Brachyspira , Infecções por Bactérias Gram-Negativas , Doenças dos Suínos , Humanos , Suínos , Estados Unidos/epidemiologia , Animais , Tilosina/farmacologia , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus/veterinária , Bacitracina/farmacologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Suínos/epidemiologia , Farmacorresistência Bacteriana , Brachyspira/genética , Brachyspira hyodysenteriae/genética , Anti-Infecciosos/farmacologia , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA