Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.681
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2246-2257, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044588

RESUMO

The dramatic rise in the number of obese/overweight people is a global public health challenge that urgently requires novel and effective therapies. In this study, we designed a fast dissolving polymer microneedle array patch (SGN-PVP/PVA-MN) with sitagliptin as a model drug for treating obesity, focusing on the preparation process of the patch. We then characterized the morphology and dimensions of SGN-PVP/PVA-MN. Furthermore, we delved into the mechanical properties, solubility, skin-puncturing capability, and transdermal drug diffusion and release kinetics of SGN-PVP/PVA-MN. The results demonstrated that SGN-PVP/PVA-MN exhibited favorable morphology and mechanical properties, effectively penetrating the stratum corneum and creating microchannels for rapid transdermal drug diffusion. The in vitro transdermal diffusion assays revealed the release of 64.5% of the drug within 2 min and 95.7% within 10 min. With rapid dissolution and high drug diffusion efficiency, SGN-PVP/PVA-MN is poised to serve as an effective and safe treatment option for the individuals with obesity.


Assuntos
Administração Cutânea , Agulhas , Fosfato de Sitagliptina , Sistemas de Liberação de Medicamentos , Solubilidade , Polímeros/química , Absorção Cutânea , Obesidade , Animais , Adesivo Transdérmico , Humanos , Suínos
2.
Molecules ; 29(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998948

RESUMO

Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.


Assuntos
Administração Cutânea , Antígenos , Imunização , Líquidos Iônicos , Ovalbumina , Adesivo Transdérmico , Líquidos Iônicos/química , Animais , Camundongos , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Antígenos/imunologia , Antígenos/administração & dosagem , Antígenos/química , Suínos , Pele/metabolismo , Pele/imunologia , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL , Feminino , Absorção Cutânea
3.
J Opioid Manag ; 20(3): 260-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017618

RESUMO

Transitioning a patient with chronic pain from a fentanyl patch to a buprenorphine patch has not been well described in the literature. Even after a patient removes their fentanyl patch, the residual fentanyl in the skin continues to be absorbed for hours. Due to the risk of precipitated withdrawal when initiating buprenorphine, this transition is a more challenging opioid rotation to plan safely. We report a case of a patient who had been using a fentanyl patch for over 10 years and was successfully rotated directly to a buprenorphine patch.


Assuntos
Analgésicos Opioides , Buprenorfina , Dor Crônica , Fentanila , Adesivo Transdérmico , Humanos , Buprenorfina/administração & dosagem , Buprenorfina/efeitos adversos , Fentanila/administração & dosagem , Fentanila/efeitos adversos , Dor Crônica/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Administração Cutânea , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Tratamento de Substituição de Opiáceos , Feminino
4.
Skin Res Technol ; 30(7): eSRT13784, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031931

RESUMO

BACKGROUND: Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system. The study aimed to evaluate the effectiveness of the "CELLADEEP Patch" in skin improvement. METHODS: Ex vivo human-derived skin tissue models were used in this study and they were divided into three different groups, namely, the Untreated Group, the Negative Control Group, and the Test Group respectively. The Untreated Group received no treatment measures, the Negative Control Group was exposed to ultraviolet B radiation (UVB) irradiation, and the Test Group was exposed to UVB irradiation and treated with "CELLADEEP Patch". Skin moisture content, transdermal water loss, and skin elasticity were evaluated by three clinical devices. Additionally, histological staining and related mRNA expression levels were also analyzed. RESULTS: The results of skin moisture content, transdermal water loss, and skin elasticity evaluation consistently illustrated that the application of "CELLADEEP Patch" led to remarkable skin improvement. And the analysis of histological staining images also confirmed the effectiveness of the "CELLADEEP Patch", especially for increasing collagen density. Moreover, the upregulation of Collagen type 1 a (COL1A1) and hyaluronan synthase 3 mRNA expression and the decrease of Matrix metalloproteinase 1 (MMP-1) and Interleukin-1 beta (IL-1ß) mRNA expression reflected its wrinkle improvement, moisturizing and anti-inflammation function. CONCLUSION: "CELLADEPP Patch", the MTS combined with the iontophoresis technique, exhibits its effectiveness in moisturizing, skin elasticity improvement, and anti-inflammatory function when applied to ex vivo human-derived skin tissue models in experiments. The study has contributed to the understanding of the "CELLADEPP Patch" and laid the foundation for subsequent animal experiments and clinical trials.


Assuntos
Ácido Hialurônico , Iontoforese , Agulhas , Pele , Humanos , Ácido Hialurônico/administração & dosagem , Iontoforese/métodos , Iontoforese/instrumentação , Pele/efeitos da radiação , Colágeno , Elasticidade , Metaloproteinase 1 da Matriz/metabolismo , Interleucina-1beta/metabolismo , Raios Ultravioleta , Envelhecimento da Pele/efeitos da radiação , Perda Insensível de Água/efeitos da radiação , Adesivo Transdérmico , Colágeno Tipo I/metabolismo
5.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892359

RESUMO

Transdermal drug delivery offers a promising alternative for administering medications like ibuprofen, known for its analgesic and anti-inflammatory properties, with reduced gastrointestinal side effects compared to oral administration. This study explored the potential synergistic effects of combining ibuprofen with lavender essential oil (LEO) in transdermal patches. The composition of LEO was analyzed, revealing predominant compounds such as linalyl acetate and linalool, which are known for their analgesic and anti-inflammatory properties. The physicochemical properties of the patches were investigated, indicating improved cohesion with the addition of LEO. Additionally, thermal stability assessments demonstrated enhanced stability with LEO incorporation with an increase in onset decomposition temperature from 49.0 to 67.9 °C. The antioxidant activity of patches containing LEO was significantly higher with a free radical scavenging ability of 79.13% RSA compared to 60% RSA in patches without LEO. Release and permeation studies showed that patches with LEO exhibited an increased permeation of ibuprofen through the skin with 74.40% of the drug released from LEO-containing patches compared to 36.29% from patches without LEO after 24 h. Moreover, the permeation rate was notably faster with LEO, indicating quicker therapeutic effects. The inclusion of LEO in transdermal patches containing ibuprofen holds promise for enhancing drug delivery efficiency and therapeutic effectiveness, offering a potential strategy for improved pain management with reduced side effects.


Assuntos
Anti-Inflamatórios , Ibuprofeno , Lavandula , Óleos Voláteis , Óleos de Plantas , Adesivo Transdérmico , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , Lavandula/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Ibuprofeno/química , Ibuprofeno/administração & dosagem , Ibuprofeno/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Administração Cutânea , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Liberação Controlada de Fármacos , Monoterpenos Acíclicos , Monoterpenos
6.
ACS Appl Mater Interfaces ; 16(25): 32128-32146, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38872576

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a "green" cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core-shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches' exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches' moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.


Assuntos
Antibacterianos , Dermatite Atópica , Staphylococcus aureus , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Nanofibras/química , Adesivo Transdérmico , Adesivos/química , Adesivos/farmacologia , Nanoestruturas/química , Animais , Pele/efeitos dos fármacos , Pele/patologia
7.
Eur J Pharm Biopharm ; 201: 114347, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825168

RESUMO

PEGylated superoxide dismutase (PEG-SOD) is commonly used as a cytoprotective agent in radiotherapy. However, its effectiveness in preventing radiation dermatitis is limited owing to its poor skin permeability. To address this issue, a PEG-SOD-loaded dissolving microneedle (PSMN) patch was developed to effectively prevent radiation dermatitis. Initially, PSMN patches were fabricated using a template mold method with polyvinylpyrrolidone K90 as the matrix material. PSMNs exhibited a conical shape with adequate mechanical strength to penetrate the stratum corneum. More than 90 % of PEG-SOD was released from the PSMN patches within 30 min. Notably, the PSMN patches showed a significantly higher drug skin permeation than the PEG-SOD solutions, with a 500-fold increase. In silico simulations and experiments on skin pharmacokinetics confirmed that PSMN patches enhanced drug permeation and skin absorption, in contrast to PEG-SOD solutions. More importantly, PSMN patches efficiently mitigated ionizing radiation-induced skin damage, accelerated the healing process of radiation-affected skin tissues, and exhibited highly effective radioprotective activity for DNA in the skin tissue. Therefore, PSMN patches are promising topical remedy for the prevention of radiation dermatitis.


Assuntos
Administração Cutânea , Agulhas , Polietilenoglicóis , Radiodermite , Absorção Cutânea , Pele , Superóxido Dismutase , Adesivo Transdérmico , Polietilenoglicóis/química , Animais , Superóxido Dismutase/metabolismo , Superóxido Dismutase/administração & dosagem , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Radiodermite/prevenção & controle , Absorção Cutânea/efeitos dos fármacos , Camundongos , Masculino , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/farmacologia , Protetores contra Radiação/farmacocinética
8.
Int J Pharm ; 660: 124289, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38825171

RESUMO

The transdermal delivery of naloxone for opioid overdose emergency purposes is a challenge due to its poor rate of diffusion through the layers of skin. This results in delayed delivery of an insufficient amount of the drug within minimal time as is desired to save lives. The ability of dissolving polymeric microneedles to shorten the lag time significantly has been explored and shown to have prospects in terms of the transdermal delivery of naloxone. This is an option that offers critical advantages to the ongoing opioid crisis, including ease of distribution and easy administration, with little to no need for intervention by clinicians. Nonetheless, this approach by itself needs augmentation to meet pharmacokinetic delivery attributes desired for a viable clinical alternative to existing market dosage forms. In this study, we report the success of an optimized iontophoresis-coupled naloxone loaded dissolving microneedle patch which had facilitated a 12- fold increase in average cumulative permeation and a 6-fold increase in drug flux over a conventional dissolving microneedle patch within 60 min of application (p < 0.05). This translates to a 30 % decrease in dose requirement in a mechanistically predicted microneedle patch established to be able to achieve the desired early plasma concentration time profile needed in an opioid overdose emergency. Applying a predictive mathematical model, we describe an iontophoresis-coupled microneedle patch design capable of meeting the desired pharmacokinetic profile for a viable naloxone delivery form through skin.


Assuntos
Administração Cutânea , Iontoforese , Naloxona , Antagonistas de Entorpecentes , Agulhas , Absorção Cutânea , Adesivo Transdérmico , Naloxona/administração & dosagem , Naloxona/farmacocinética , Iontoforese/métodos , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacocinética , Animais , Sistemas de Liberação de Medicamentos , Polímeros/química , Microinjeções/métodos , Masculino , Pele/metabolismo , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacocinética
9.
Int J Pharm ; 660: 124342, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38880253

RESUMO

Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a âˆ¼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.


Assuntos
Administração Cutânea , Antipsicóticos , Ratos Sprague-Dawley , Risperidona , Esquizofrenia , Animais , Risperidona/administração & dosagem , Risperidona/farmacocinética , Esquizofrenia/tratamento farmacológico , Feminino , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacocinética , Adesivo Transdérmico , Nanopartículas/química , Nanopartículas/administração & dosagem , Liberação Controlada de Fármacos , Absorção Cutânea , Ratos , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Álcool de Polivinil/química , Palmitato de Paliperidona/administração & dosagem , Palmitato de Paliperidona/farmacocinética , Tamanho da Partícula , Solubilidade , Agulhas
10.
Pain Manag ; 14(4): 195-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939964

RESUMO

Aim: Exploring prescribing trends and economic burden of chronic low back pain (cLBP) patients prescribed buprenorphine buccal film (Belbuca®) or transdermal patches. Methods: In the MarketScan® commercial insurance claims (employees and their spouses/dependents, 2018-2021), the first film or patch prescription date was an index event. The observation covered 6-month pre-index and 12-month post-index periods. Results: Patients were propensity-score matched (708 per cohort). Buprenorphine initiation had stable cost trends in buccal film and increasing trends in transdermal patch cohort. Between-cohort comparisons of healthcare expenditures, cost trends and resource utilization showed significant differences, mostly in favor of buccal film. Buccal film also had higher daily doses and wider dosing range. Conclusion: Buprenorphine film is more cost-effective cLBP treatment with more flexible dosing.


What is this article about? This retrospective study included patients with chronic low back pain (cLBP) and commercial insurance in the USA. Only patients treated with Belbuca®, a buprenorphine buccal film, or a buprenorphine transdermal patch were included. Patients were observed 6 months prior to and 12 months after the first buprenorphine prescription. Healthcare costs, cost trends, resource use and buprenorphine treatment characteristics were explored.What were the results? Patients with cLBP on buccal film had lower costs, stable cost trends and less healthcare resources used. Also, they had higher buprenorphine daily doses.What do the results mean? The results imply that buccal film is less costly for cLBP patients than patches. The buccal film had more flexible dosing with higher daily doses, which might be associated with better pain control.


Assuntos
Analgésicos Opioides , Buprenorfina , Dor Crônica , Dor Lombar , Adesivo Transdérmico , Humanos , Dor Lombar/tratamento farmacológico , Dor Lombar/economia , Buprenorfina/administração & dosagem , Buprenorfina/economia , Feminino , Adesivo Transdérmico/economia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/economia , Masculino , Dor Crônica/tratamento farmacológico , Dor Crônica/economia , Pessoa de Meia-Idade , Administração Bucal , Adulto , Efeitos Psicossociais da Doença
11.
Biosens Bioelectron ; 258: 116326, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696965

RESUMO

In conventional clinical disease diagnosis and screening based on biomarker detection, most analysis samples are collected from serum, blood. However, these invasive collection methods require specific instruments, professionals, and may lead to infection risks. Additionally, the diagnosis process suffers from untimely results. The identification of skin-related biomarkers plays an unprecedented role in early disease diagnosis. More importantly, these skin-mediated approaches for collecting biomarker-containing biofluid samples are noninvasive or minimally invasive, which is more preferable for point-of-care testing (POCT). Therefore, skin-based biomarker detection patches have been promoted, owing to their unique advantages, such as simple fabrication, desirable transdermal properties and no requirements for professional medical staff. Currently, the skin biomarkers extracted from sweat, interstitial fluid (ISF) and wound exudate, are achieved with wearable sweat patches, transdermal MN patches, and wound patches, respectively. In this review, we detail these three types of skin patches in biofluids collection and diseases-related biomarkers identification. Patch classification and the corresponding manufacturing as well as detection strategies are also summarized. The remaining challenges in clinical applications and current issues in accurate detection are discussed for further advancement of this technology (Scheme 1).


Assuntos
Biomarcadores , Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Pele , Humanos , Biomarcadores/sangue , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Líquidos Corporais/química , Desenho de Equipamento , Líquido Extracelular/química , Testes Imediatos , Pele/química , Pele/patologia , Suor/química , Técnicas Analíticas Microfluídicas/métodos , Adesivo Transdérmico
12.
Eur J Pharm Sci ; 199: 106803, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788435

RESUMO

There is considerable evidence from the literature that psychedelics, such as N,N-dimethyltryptamine (DMT), are safe and effective treatments for depression. However, clinical administration to induce psychedelic effects and expensive psychotherapy-assisted treatments likely limit accessibility to the average patient. There is emerging evidence that DMT promotes positive behavioral changes in vivo at sub-hallucinogenic dosages, and depending on the target indication, subjecting patients to high, bolus dosages may not be necessary. Due to rapid metabolic degradation, achieving target levels of DMT in subjects is difficult, requiring IV administration, which poses risks to patients during the intense hallucinogenic and subjective drug effects. The chemical and physical properties of DMT make it an excellent candidate for non-invasive, transdermal delivery platforms. This paper outlines the formulation development, in vitro, and in vivo testing of transdermal drug-in-adhesive DMT patches using various adhesives and permeation enhancers. In vivo behavioral and pharmacokinetic studies were performed with lead patch formulation (F5) in male and female Swiss Webster mice, and resulting DMT levels in plasma and brain samples were quantified using LC/MS/MS. Notable differences were seen in female versus male mice during IV administration; however, transdermal administration provided consistent, extended drug release at a non-hallucinogenic dose. The IV half-life of DMT was extended by 20-fold with administration of the transdermal delivery system at sub-hallucinogenic plasma concentrations not exceeding 60 ng/mL. Results of a translational head twitch assay (a surrogate for hallucinogenic effects in non-human organisms) were consistent with absence of hallucinations at low plasma levels achieved with our TDDS. Despite the reported low bioavailability of DMT, the non-invasive transdermal DMT patch F5 afforded an impressive 77 % bioavailability compared to IV at two dosages. This unique transdermal delivery option has the potential to provide an out-patient treatment option for ailments not requiring higher, bolus doses and is especially intriguing for therapeutic indications requiring non-hallucinogenic alternatives.


Assuntos
Administração Cutânea , Preparações de Ação Retardada , Alucinógenos , N,N-Dimetiltriptamina , Animais , Alucinógenos/administração & dosagem , Alucinógenos/farmacocinética , Masculino , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Feminino , Camundongos , N,N-Dimetiltriptamina/administração & dosagem , N,N-Dimetiltriptamina/farmacocinética , Adesivo Transdérmico , Absorção Cutânea/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
13.
Adv Drug Deliv Rev ; 210: 115326, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38692457

RESUMO

Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics. An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.


Assuntos
Administração Cutânea , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Humanos , Animais , Adesivo Transdérmico , Agulhas , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
14.
J Control Release ; 371: 193-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782066

RESUMO

Microneedle patches have been developed as favorable platforms for delivery systems, such as the locoregional application of therapeutic drugs, and implantation systems, such as electronic devices on visceral tissue surfaces. However, the challenge lies in finding materials that can achieve both biocompatibility and stable fixation on the target tissue. To address this issue, utilizing a biocompatible adhesive biomaterial allows the flat part of the patch to adhere as well, enabling double-sided adhesion for greater versatility. In this work, we propose an adhesive microneedle patch based on mussel adhesive protein (MAP) with enhanced mechanical strength via ultraviolet-induced polyacrylate crosslinking and Coomassie brilliant blue molecules. The strong wet tissue adhesive and biocompatible nature of engineered acrylated-MAP resulted in the development of a versatile wet adhesive microneedle patch system for in vivo usage. In a mouse tumor model, this microneedle patch effectively delivered anticancer drugs while simultaneously sealing the skin wound. Additionally, in an application of rat subcutaneous implantation, an electronic circuit was stably anchored using a double-sided wet adhesive microneedle patch, and its signal location underneath the skin did not change over time. Thus, the proposed acrylated-MAP-based wet adhesive microneedle patch system holds great promise for biomedical applications, paving the way for advancements in drug delivery therapeutics, tissue engineering, and implantable electronic medical devices.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Proteínas , Animais , Proteínas/administração & dosagem , Microinjeções/métodos , Ratos Sprague-Dawley , Adesivo Transdérmico , Adesivos Teciduais/administração & dosagem , Camundongos , Humanos , Antineoplásicos/administração & dosagem , Masculino , Linhagem Celular Tumoral , Ratos , Feminino , Camundongos Endogâmicos BALB C , Pele/metabolismo , Adesivos/administração & dosagem , Acrilatos/química , Acrilatos/administração & dosagem
15.
Int J Nanomedicine ; 19: 4321-4337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770103

RESUMO

Purpose: Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods: A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results: In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion: CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.


Assuntos
Administração Cutânea , Disponibilidade Biológica , Canabidiol , Portadores de Fármacos , Nanopartículas , Absorção Cutânea , Adesivo Transdérmico , Canabidiol/farmacocinética , Canabidiol/química , Canabidiol/administração & dosagem , Animais , Absorção Cutânea/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Tamanho da Partícula , Pele/metabolismo , Pele/efeitos dos fármacos , Micelas
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 720-726, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708506

RESUMO

OBJECTIVE: To explore the therapeutic effect of transdermal patches containing Cassia seed extract applied at the navel on slow transit constipation (STC) in rats and explore the spectrum-effect relationship of the patches. METHOD: In a STC rat model established by gavage of compound diphenoxylate suspension for 14 days, the transdermal patches containing low, medium and high doses of Cassia seed extract (41.75, 125.25, and 375.75 mg/kg, respectively) were applied at the Shenque acupoint on the abdomen for 14 days after modeling, with constipation patches (13.33 mg/kg) as the positive control. After the treatment, fecal water content and intestinal propulsion rate of the rats were calculated, the pathological changes in the colon were observed with HE staining. Serum NO and NOS levels and the total protein content and NO, NOS and AChE expressions in the colon tissue were determined. HPLC fingerprints of the transdermal patches were established, and the spectrum-effect relationship between the common peaks of the patches and its therapeutic effect were analyzed. RESULTS: Treatment with the transdermal patches containing Cassia seed extract significantly increased fecal water content and intestinal propulsion rate of the rat models, where no pathological changes in the colon tissue were detected. The treatment also suppressed the elevations of serum and colonic NO and NOS levels and reduction of AChE in STC rats. Twenty-eight common peaks were confirmed in the HPLC fingerprints of 6 batches of Cassia seed extract-containing patches. Analysis of the spectrum-effect relationship showed that autrantio-obtusin had the greatest contribution to the therapeutic effect of the patches in STC rats. CONCLUSION: The Cassia seed extract-containing patches alleviates STC in rats via synergistic actions of multiple active ingredients in the extract, where autrantio-obtusin, rhein, chrysoobtusin, obtusin, obtusifolin, emodin, chrysophanol, and physcion are identified as the main active ingredients.


Assuntos
Cassia , Constipação Intestinal , Extratos Vegetais , Sementes , Adesivo Transdérmico , Animais , Ratos , Cassia/química , Constipação Intestinal/tratamento farmacológico , Sementes/química , Ratos Sprague-Dawley , Colo/efeitos dos fármacos , Pontos de Acupuntura , Óxido Nítrico/metabolismo , Modelos Animais de Doenças , Masculino , Medicamentos de Ervas Chinesas/uso terapêutico
17.
Biomater Adv ; 161: 213889, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781739

RESUMO

Diclofenac, a nonsteroidal anti-inflammatory drug, is commonly prescribed for managing osteoarthritis, rheumatoid arthritis, and post-surgical pain. However, oral administration of diclofenac often leads to adverse effects. This study introduces an innovative nano-in-micro approach to create diclofenac nanoparticle-loaded microneedle patches aimed at localised, sustained pain relief, circumventing the drawbacks of oral delivery. The nanoparticles were produced via wet-milling, achieving an average size of 200 nm, and then incorporated into microneedle patches. These patches showed improved skin penetration in ex vivo tests using Franz-cell setups compared to traditional diclofenac formulations. In vivo tests on rats revealed that the nanoparticle-loaded microneedle patches allowed for quick drug uptake and prolonged release, maintaining drug levels in tissues for up to 72 h. With a systemic bioavailability of 57 %, these patches prove to be an effective means of transdermal drug delivery. This study highlights the potential of this novel microneedle delivery system in enhancing the treatment of chronic pain with reduced systemic side effects.


Assuntos
Administração Cutânea , Anti-Inflamatórios não Esteroides , Diclofenaco , Sistemas de Liberação de Medicamentos , Agulhas , Diclofenaco/administração & dosagem , Diclofenaco/farmacocinética , Animais , Ratos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/administração & dosagem , Masculino , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Adesivo Transdérmico , Ratos Sprague-Dawley
18.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38752564

RESUMO

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Assuntos
Administração Cutânea , Calcitriol , Sistemas de Liberação de Medicamentos , Agulhas , Psoríase , Ratos Sprague-Dawley , Psoríase/tratamento farmacológico , Animais , Calcitriol/análogos & derivados , Calcitriol/administração & dosagem , Ratos , Sistemas de Liberação de Medicamentos/métodos , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Tamanho da Partícula , Masculino , Nanopartículas/química , Imiquimode/administração & dosagem , Suspensões , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Adesivo Transdérmico
19.
Expert Rev Neurother ; 24(6): 607-614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38785454

RESUMO

INTRODUCTION: Cholinesterase inhibitors, along with memantine, are the mainstay of symptomatic treatment for AD (Alzheimer's disease); however, these medications are typically administered orally, which can be difficult for people with AD and their caregivers. AREAS COVERED: In this drug profile and narrative review, the authors trace the development of the new FDA-approved transdermal donepezil. The authors discuss the studies showing its bioequivalence with the oral formulation, including two double-blinded placebo controlled non-inferiority trials. The authors also compare the patch to the only other transdermal cholinesterase inhibitor on the market, rivastigmine, and highlight the potential advantages and disadvantages between these two treatments. EXPERT OPINION: While the patch is bio-equivalent, it is rather large and may not be affordable for some patients. In addition, there is no high dose (e.g. 23 mg) equivalent. Nevertheless, transdermal donepezil will be useful for people with AD and their caregivers, given its effectiveness and potential convenience.


Assuntos
Administração Cutânea , Doença de Alzheimer , Inibidores da Colinesterase , Donepezila , Humanos , Donepezila/administração & dosagem , Donepezila/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/uso terapêutico , Adesivo Transdérmico , Rivastigmina/administração & dosagem , Rivastigmina/uso terapêutico , Índice de Gravidade de Doença
20.
Eur J Pharm Biopharm ; 199: 114311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710374

RESUMO

The field of machine learning (ML) is advancing to a larger extent and finding its applications across numerous fields. ML has the potential to optimize the development process of microneedle patch by predicting the drug release pattern prior to its fabrication and production. The early predictions could not only assist the in-vitro and in-vivo experimentation of drug release but also conserve materials, reduce cost, and save time. In this work, we have used a dataset gleaned from the literature to train and evaluate different ML models, such as stacking regressor, artificial neural network (ANN) model, and voting regressor model. In this study, models were developed to improve prediction accuracy of the in-vitro drug release amount from the hydrogel-type microneedle patch and the in-vitro drug permeation amount through the micropores created by solid microneedles on the skin. We compared the performance of these models using various metrics, including R-squared score (R2 score), root mean squared error (RMSE), and mean absolute error (MAE). Voting regressor model performed better with drug permeation percentage as an outcome feature having RMSE value of 3.24. In comparison, stacking regressor have a RMSE value of 16.54, and ANN model has shown a RMSE value of 14. The value of permeation amount calculated from the predicted percentage is found to be more accurate with RMSE of 654.94 than direct amount prediction, having a RMSE of 669.69. All our models have performed far better than the previously developed model before this research, which had a RMSE of 4447.23. We then optimized voting regressor model's hyperparameter and cross validated its performance. Furthermore, it was deployed in a webapp using Flask framework, showing a way to develop an application to allow other users to easily predict drug permeation amount from the microneedle patch at a particular time period. This project demonstrates the potential of ML to facilitate the development of microneedle patch and other drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Aprendizado de Máquina , Agulhas , Redes Neurais de Computação , Permeabilidade , Absorção Cutânea , Pele , Absorção Cutânea/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Administração Cutânea , Liberação Controlada de Fármacos , Adesivo Transdérmico , Animais , Microinjeções/métodos , Microinjeções/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA