Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.235
Filtrar
1.
Arch Microbiol ; 206(4): 200, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564016

RESUMO

Fusarium wilt of lentil caused by Fusarium oxysporum f. sp. lentis (Fol) is a destructive pathogen limiting lentil production in India. In the present study, Secreted in Xylem (SIX) effectors genes were explored in Indian races of Fol and also a diagnostic tool for reliable detection of the disease was developed. Four SIX effectors genes, SIX11, SIX13, SIX6 and SIX2 were identified in 12 isolates of Fol belonging to seven races. SIX11 was present in all the races while SIX 13 was absent in race 6 and SIX6 was present only in race 4. The phylogenetic analysis revealed the conserved nature of the SIX genes within the forma specialis and showed sequence homology with F. oxysporum f. sp. pisi. The presence of three effectors, SIX11, SIX13 and SIX6 in race 4 correlates with high disease incidence in lentil germplasms. The in-silico characterization revealed the presence of signal peptide and localization of the effectors. Further SIX11 effector gene present in all the isolates was used to develop Fol-specific molecular marker for accurate detection. The marker developed could differentiate F. oxysporum f. sp. lycopersici, F. solani, F. oxysporum, Rhizoctonia solani and Sclerotium rolfsii and had a detection limit of 0.01ng µL- 1. The effector-based marker detection helps in the unambiguous detection of the pathogen under field conditions.


Assuntos
Fusarium , Filogenia , Marcadores Genéticos , Fusarium/genética , Xilema
2.
Genome Biol ; 25(1): 85, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570851

RESUMO

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Perfilação da Expressão Gênica , Xilema/genética , Xilema/crescimento & desenvolvimento , Transcriptoma , Análise de Célula Única
3.
Physiol Plant ; 176(3): e14292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685817

RESUMO

Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.


Assuntos
Congelamento , Isótopos de Oxigênio , Árvores , Água , Xilema , Isótopos de Oxigênio/análise , Água/metabolismo , Árvores/metabolismo , Xilema/metabolismo , Xilema/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Marcação por Isótopo/métodos , Caules de Planta/química , Caules de Planta/metabolismo
4.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38606678

RESUMO

Worldwide, forests are increasingly exposed to extreme droughts causing tree mortality. Because of the complex nature of the mechanisms involved, various traits have been linked to tree drought responses with contrasting results. This may be due to species-specific strategies in regulating water potential, a process that unfolds in two distinct phases: a first phase until stomatal closure, and a second phase until reaching lethal xylem hydraulic thresholds. We conducted dry-down experiments with five broadleaved temperate tree species differing in their degree of isohydry to estimate the time to stomatal closure (tsc) and subsequent time to critical hydraulic failure (tcrit). We measured various traits linked to tree drought responses, such as the water potentials at turgor loss point (Ptlp), stomatal closure (Pgs90), and 12%, 50% and 88% loss of xylem hydraulic conductance (P12, P50, P88), hydraulic capacitance (C), minimum leaf conductance (gmin), hydroscape area (HSA) and hydraulic safety margins (HSM). We found that Pgs90 followed previously recorded patterns of isohydry and was associated with HSA. Species ranked from more to less isohydric in the sequence Acer pseudoplatanus < Betula pendula < Tilia cordata < Sorbus aucuparia < Fagus sylvatica. Their degree of isohydry was associated with leaf safety (Ptlp and gmin), drought avoidance (C) and tsc, but decoupled from xylem safety (HSM and P88) and tcrit. Regardless of their stomatal stringency, species with wider HSM and lower P88 reached critical hydraulic failure later. We conclude that the duration of the first phase is determined by stomatal regulation, while the duration of the second phase is associated with xylem safety. Isohydry is thus linked to water use rather than to drought survival strategies, confirming the proposed use of HSA as a complement to HSM for describing plant drought responses before and after stomatal closure.


Assuntos
Estômatos de Plantas , Árvores , Água , Xilema , Estômatos de Plantas/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Água/metabolismo , Água/fisiologia , Secas , Especificidade da Espécie , Transpiração Vegetal/fisiologia
5.
EMBO J ; 43(9): 1843-1869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565948

RESUMO

The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Regulação da Expressão Gênica de Plantas , Meristema , MicroRNAs , Raízes de Plantas , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética
6.
EMBO J ; 43(9): 1822-1842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565947

RESUMO

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Divisão Celular , Regulação da Expressão Gênica de Plantas , MicroRNAs , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Divisão Celular/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular , Xilema/citologia , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/genética
7.
Analyst ; 149(9): 2709-2718, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525956

RESUMO

Inorganic fertilizers are routinely used in large scale crop production for the supplementation of nitrogen, phosphorus, and potassium in nutrient poor soil. To explore metabolic changes in tomato plants grown on humic sand under different nutritional conditions, matrix-assisted laser desorption ionization (MALDI) mass spectrometry was utilized for the analysis of xylem sap. Variations in the abundances of metabolites and oligosaccharides, including free N-glycans (FNGs), were determined. Statistical analysis of the sample-related peaks revealed significant differences in the abundance ratios of multiple metabolites, including oligosaccharides, between the control plants, grown with no fertilizers, and plants raised under "ideal" and "nitrogen deficient" nutritional conditions, i.e., under the three treatment types. Among the 36 spectral features tentatively identified as oligosaccharides, the potential molecular structures for 18 species were predicted based on their accurate masses and isotope distribution patterns. To find the spectral features that account for most of the differences between the spectra corresponding to the three different treatments, multivariate statistical analysis was carried out by orthogonal partial least squares-discriminant analysis (OPLS-DA). They included both FNGs and non-FNG compounds that can be considered as early indicators of nutrient deficiency. Our results reveal that the potential nutrient deficiency indicators can be expanded to other metabolites beyond FNGs. The m/z values for 20 spectral features with the highest variable influence on projection (VIP) scores were ranked in the order of their influence on the statistical model.


Assuntos
Polissacarídeos , Solanum lycopersicum , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Solanum lycopersicum/metabolismo , Solanum lycopersicum/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/metabolismo , Polissacarídeos/análise , Metaboloma , Fertilizantes/análise , Nitrogênio/metabolismo , Análise Discriminante , Xilema/metabolismo , Xilema/química , Nutrientes/metabolismo
9.
New Phytol ; 242(3): 1146-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462819

RESUMO

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Transativadores/metabolismo , Xilema/metabolismo
10.
Plant Sci ; 343: 112074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548138

RESUMO

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Assuntos
Giberelinas , Populus , Giberelinas/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/genética
11.
Tree Physiol ; 44(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38531772

RESUMO

Xylem embolism is a significant factor in tree mortality. Restoration of hydraulic conductivity after massive embolization of the vascular system requires the application of positive pressure to the vessels and/or the creation of new conductive elements. Some species generate positive pressure from the root system to propagate pressure in distal, aboveground organs in spring, whereas other species generate positive pressure locally at the stem level during winter. We provide a mechanistic explanation for winter stem pressure build-up in the walnut tree. We have developed a physical model that accounts for temperature fluctuations and phase transitions. This model is based on the exchange of water and sugars between living cells and vessels. Our computations demonstrate that vessel pressurization can be attributed to the transfer of water between vessels across the parenchyma rays, which is facilitated by a radial imbalance in sugar concentration. The ability to dispose of soluble sugars in living cells, and to transport them between living cells and up to the vessels, is identified as the main drivers of stem pressure build-up in the walnut tree.


Assuntos
Juglans , Caules de Planta , Estações do Ano , Árvores , Xilema , Juglans/fisiologia , Caules de Planta/fisiologia , Xilema/fisiologia , Árvores/fisiologia , Pressão , Modelos Biológicos , Água/metabolismo , Água/fisiologia , Transporte Biológico
12.
Cell Rep ; 43(4): 113987, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517888

RESUMO

Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Caules de Planta , Xilema , Xilema/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Camellia sinensis/fisiologia , Camellia sinensis/genética , Camellia sinensis/metabolismo , Adaptação Fisiológica
13.
Curr Opin Plant Biol ; 78: 102526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479078

RESUMO

Vascular cells form a highly complex and heterogeneous tissue. Its composition, function, shape, and arrangement vary with the developmental stage and between organs and species. Understanding the transcriptional regulation underpinning this complexity thus requires a high-resolution technique that is capable of capturing rapid events during vascular cell formation. Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) approaches provide powerful tools to extract transcriptional information from these lowly abundant and dynamically changing cell types, which allows the reconstruction of developmental trajectories. Here, we summarize and reflect on recent studies using single-cell transcriptomics to study vascular cell types and discuss current and future implementations of sc/snRNA-seq approaches in the field of vascular development.


Assuntos
Câmbio , Xilema , Câmbio/genética , Câmbio/metabolismo , Xilema/metabolismo , Floema/metabolismo , Plantas/genética , RNA Nuclear Pequeno/metabolismo
14.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38392920

RESUMO

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Assuntos
Antocianinas , Proteínas de Arabidopsis , Criptocromos , Regulação da Expressão Gênica de Plantas , Luz , Populus , Madeira , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Criptocromos/metabolismo , Criptocromos/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Madeira/metabolismo , Madeira/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Xilema/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Luz Azul
15.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38324309

RESUMO

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Assuntos
Autofagia , Evolução Biológica , Parede Celular , Xilema , Parede Celular/metabolismo , Autofagia/fisiologia , Xilema/fisiologia , Cycadopsida/fisiologia , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiologia , Gleiquênias/fisiologia , Gleiquênias/citologia
16.
Ann Bot ; 133(4): 521-532, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334466

RESUMO

BACKGROUND AND AIMS: Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS: We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS: Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ±â€…0.01 mm2 mm-3 in Lenoir to 0.17 ±â€…0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ±â€…0.015) and Chardonnay (0.041 ±â€…0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS: Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.


Assuntos
Doenças das Plantas , Vitis , Xylella , Xilema , Vitis/microbiologia , Vitis/fisiologia , Xilema/fisiologia , Xilema/microbiologia , Xylella/fisiologia , Doenças das Plantas/microbiologia , Microtomografia por Raio-X , Resistência à Doença , Genótipo
17.
Am J Bot ; 111(3): e16290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380953

RESUMO

PREMISE: Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS: We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS: Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS: These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.


Assuntos
Árvores , Xilema , Fenômenos Biomecânicos , Água , Celulose , Amido , Açúcares
18.
Curr Biol ; 34(6): 1161-1167.e3, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325374

RESUMO

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Assuntos
Traqueófitas , Temperatura , Ecossistema , Mudança Climática , Xilema , Estações do Ano , Árvores
19.
New Phytol ; 242(2): 493-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404029

RESUMO

Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.


Assuntos
Ouro , Magnoliopsida , Xilema , Transporte Biológico , Perfusão , Água
20.
New Phytol ; 242(2): 466-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406847

RESUMO

A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.


Assuntos
Folhas de Planta , Populus , Secas , Xilema , Transpiração Vegetal , Água , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...