Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.579
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000255

RESUMO

4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,ß-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.


Assuntos
Chalconas , Solventes Eutéticos Profundos , Oxirredução , Rhodotorula , Rhodotorula/metabolismo , Chalconas/metabolismo , Chalconas/química , Solventes Eutéticos Profundos/metabolismo , Solventes Eutéticos Profundos/química , Yarrowia/metabolismo , Leveduras/metabolismo , Temperatura , Biocatálise
2.
Microb Cell Fact ; 23(1): 184, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915032

RESUMO

With the current progress in the 'design' and 'build' stages of the 'design-build-test-learn' cycle, many synthetic biology projects become 'test-limited'. Advances in the parallelization of microbes cultivations are of great aid, however, for many species down-scaling leaves a metabolic footprint. Yarrowia lipolytica is one such demanding yeast species, for which scaling-down inevitably leads to perturbations in phenotype development. Strictly aerobic metabolism, propensity for filamentation and adhesion to hydrophobic surfaces, spontaneous flocculation, and high acidification of media are just several characteristics that make the transfer of the micro-scale protocols developed for the other microbial species very challenging in this case. It is well recognized that without additional 'personalized' optimization, either MTP-based or single-cell-based protocols are useless for accurate studies of Y. lipolytica phenotypes. This review summarizes the progress in the scaling-down and parallelization of Y. lipolytica cultures, highlighting the challenges that occur most frequently and strategies for their overcoming. The problem of Y. lipolytica cultures down-scaling is illustrated by calculating the costs of micro-cultivations, and determining the unintentionally introduced, thus uncontrolled, variables. The key research into culturing Y. lipolytica in various MTP formats and micro- and pico-bioreactors is discussed. Own recently developed and carefully pre-optimized high-throughput cultivation protocol is presented, alongside the details from the optimization stage. We hope that this work will serve as a practical guide for those working with Y. lipolytica high-throughput screens.


Assuntos
Yarrowia , Yarrowia/metabolismo , Yarrowia/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos
3.
ACS Synth Biol ; 13(6): 1647-1662, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38860708

RESUMO

Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.


Assuntos
Engenharia Metabólica , Monoterpenos , Saccharomyces cerevisiae , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Monoterpenos/metabolismo , Fermentação , Vias Biossintéticas/genética , Terpenos/metabolismo , Edição de Genes/métodos
4.
J Environ Manage ; 363: 121315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850910

RESUMO

The rising generation of waste activated sludge (WAS) demands a fundamental shift towards resource reuse and recovery. The conventional methodologies used to manage this by-product derived from wastewater treatment plants are increasingly constrained due to stringent regulatory measures aimed at mitigating its adverse impacts on the environment and public health. Therefore, this work evaluated a promising strategy for the efficient management of WAS, transforming it into a valuable renewable source to produce high-value-added compounds, such as lipids and a slow-release fertilizer (struvite). Wet oxidation (WO) was identified as a suitable technique for solubilising WAS while generating short-chain fatty acids (primarily acetic acid). It was found that conducting WO at 200 °C for 120 min resulted in a 65% reduction of the total suspended solids (TSS) content and 87% of the volatile suspended solids (VSS) content. Additionally, under these conditions, 4440 ± 105 mg/L and 593 ± 21 mg/L of acetic and propionic acid were obtained, respectively, which were assimilated by Yarrowia lipolytica to produce biolipids. Furthermore, the rupture of WAS flocs also led to the solubilisation of 980 ± 8 mg/L of ammonium. During the struvite precipitation stage, a NH4:PO4:Mg ratio of 1:1.5:1.5 was found to be the most effective for removing soluble ammonium (97.4 ± 0.8%), resulting in a high-purity struvite formation, and enhancing the carbon/nitrogen (C/N) ratio of the oxidised WAS from 3 to 105. This improvement in the C/N ratio raised the lipid content from 36 ± 1% to 49 ± 1% during the cultivation of Y. lipolytica. The application of the sequencing batch culture strategy further increased lipid content to 59 ± 1%, with 6.0 ± 0.3 g/L as the final concentration after the fifth cycle. The lipids produced, mainly monounsaturated fatty acids with 40% of oleic acid, offer potential as biodiesel feedstock. This lipid composition led to biodiesel properties, including cetane number, iodine value, kinematic viscosity and density that met international standards. Therefore, this research presents a promising alternative not only for WAS management but also for harnessing valuable resources, thereby establishing a basis for large-scale studies.


Assuntos
Lipídeos , Esgotos , Yarrowia , Yarrowia/metabolismo , Lipídeos/química , Eliminação de Resíduos Líquidos/métodos , Nutrientes/metabolismo , Fertilizantes/análise
5.
Sci Rep ; 14(1): 14233, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902520

RESUMO

Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Ácidos Graxos Voláteis/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Yarrowia/metabolismo , Yarrowia/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Biomassa , Biocombustíveis/microbiologia , Ácidos Carboxílicos/metabolismo , Pichia/metabolismo , Pichia/crescimento & desenvolvimento
6.
Biomolecules ; 14(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38927115

RESUMO

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Assuntos
Engenharia Metabólica , Resveratrol , Sacarose , Yarrowia , Resveratrol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica/métodos , Sacarose/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Vitis/microbiologia , Vitis/genética , Vitis/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Malonil Coenzima A/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Rhodotorula/genética , Rhodotorula/metabolismo , Fermentação , Arabidopsis/genética , Arabidopsis/metabolismo , Amônia-Liases , Proteínas de Bactérias
7.
Biotechnol J ; 19(6): e2400290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900053

RESUMO

Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.


Assuntos
Formiatos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Formiatos/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Evolução Molecular Direcionada , Glioxilatos/metabolismo , Edição de Genes
8.
Biotechnol Adv ; 74: 108392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38825214

RESUMO

Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.


Assuntos
Escherichia coli , Engenharia Metabólica , Xantofilas , Xantofilas/isolamento & purificação , Escherichia coli/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Yarrowia/metabolismo , Yarrowia/genética , Micro-Ondas
9.
ACS Synth Biol ; 13(7): 2188-2198, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38912892

RESUMO

Metabolically engineered microbial consortia can contribute as a promising production platform for the supply of polyamide monomers. To date, the biosynthesis of long-chain α,ω-diamines from n-alkanes is challenging because of the inert nature of n-alkanes and the complexity of the overall synthesis pathway. We combined an engineered Yarrowia lipolytica module with Escherichia coli modules to obtain a mixed strain microbial consortium that could catalyze an efficient biotransformation of n-alkanes into corresponding α,ω-diamines. The engineered Y. lipolytica strain was constructed (YALI10) wherein the two genes responsible for ß-oxidation and the five genes responsible for the overoxidation of fatty aldehydes were deleted. This newly constructed YALI10 strain expressing transaminase (TA) could produce 0.2 mM 1,12-dodecanediamine (40.1 mg/L) from 10 mM n-dodecane. The microbial consortia comprising engineered Y. lipolytica strains for the oxidation of n-alkanes (OM) and an E. coli amination module (AM) expressing an aldehyde reductase (AHR) and transaminase (TA) improved the production of 1,12-diamine up to 1.95 mM (391 mg/L) from 10 mM n-dodecane. Finally, combining the E. coli reduction module (RM) expressing a carboxylic acid reductase (CAR) and an sfp phosphopantetheinyl transferase with OM and AM further improved the production of 1,12-diamine by catalyzing the reduction of undesired 1,12-diacids into 1,12-diols, which further undergo amination to give 1,12-diamine as the target product. This newly constructed mixed strain consortium comprising three modules in one pot gave 4.1 mM (41%; 816 mg/L) 1,12-diaminododecane from 10 mM n-dodecane. The whole-cell consortia reported herein present an elegant "greener" alternative for the biosynthesis of various α,ω-diamines (C8, C10, C12, and C14) from corresponding n-alkanes.


Assuntos
Alcanos , Biocatálise , Diaminas , Escherichia coli , Engenharia Metabólica , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Alcanos/metabolismo , Engenharia Metabólica/métodos , Diaminas/metabolismo , Transaminases/metabolismo , Transaminases/genética , Oxirredução , Consórcios Microbianos/genética
10.
Microbiology (Reading) ; 170(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913407

RESUMO

Yeasts have established themselves as prominent microbial cell factories, and the availability of synthetic biology tools has led to breakthroughs in the rapid development of industrial chassis strains. The selection of a suitable microbial host is critical in metabolic engineering applications, but it has been largely limited to a few well-defined strains. However, there is growing consideration for evaluating strain diversity, as a wide range of specific traits and phenotypes have been reported even within a specific yeast genus or species. Moreover, with the advent of synthetic biology tools, non-type strains can now be easily and swiftly reshaped. The yeast Yarrowia lipolytica has been extensively studied for various applications such as fuels, chemicals, and food. Additionally, other members of the Yarrowia clade are currently being evaluated for their industrial potential. In this study, we demonstrate the versatility of synthetic biology tools originally developed for Y. lipolytica by repurposing them for engineering other yeasts belonging to the Yarrowia clade. Leveraging the Golden Gate Y. lipolytica tool kit, we successfully expressed fluorescent proteins as well as the carotenoid pathway in at least five members of the clade, serving as proof of concept. This research lays the foundation for conducting more comprehensive investigations into the uncharacterized strains within the Yarrowia clade and exploring their potential applications in biotechnology.


Assuntos
Engenharia Metabólica , Biologia Sintética , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Yarrowia/classificação , Biologia Sintética/métodos
11.
Environ Res ; 255: 119193, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777296

RESUMO

The biodegradation of Trichloroethylene (TCE) is limited by low microbial metabolic capacity but can be enhanced through biostimulation strategies. This study explored the physiological effects and potential molecular mechanisms of the yeast Yarrowia lipolytica extracellular metabolites (YEMs) on the degradation of TCE by Acinetobacter LT1. Results indicated that YEMs stimulated the efficiency of strain LT1 by 50.28%. At the physiological level, YEMs exhibited protective effects on cell morphology, reduced oxidative stress, lessened membrane damage, and enhanced energy production and conversion. Analysis of omics results revealed that the regulation of various metabolic pathways by YEMs improved the degradation of TCE. Furthermore, RT-qPCR showed that the genes encoding YhhW protein in TCE stress and YEMs stimulation groups were 1.72 and 3.22 times the control group, respectively. Molecular docking results showed that the conformation of YhhW after binding to TCE changed into a more active form, which enhanced enzyme activity. Therefore, it is speculated that YhhW is the primary degradative enzyme involved in the process of YEMs stimulating strain LT1 to degrade TCE. These results reveal how YEMs induce strain LT1 to enhance TCE degradation.


Assuntos
Biodegradação Ambiental , Tricloroetileno , Yarrowia , Tricloroetileno/metabolismo , Yarrowia/metabolismo , Yarrowia/genética , Acinetobacter/metabolismo , Acinetobacter/genética , Simulação de Acoplamento Molecular
12.
Bioresour Technol ; 403: 130764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718903

RESUMO

Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.


Assuntos
Ácido Acético , Furaldeído , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Furaldeído/farmacologia , Ácido Acético/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lignina/metabolismo , Genoma Fúngico , Biblioteca Gênica
13.
mBio ; 15(6): e0034224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747615

RESUMO

Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation. IMPORTANCE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.


Assuntos
Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amoeba/microbiologia , Amoeba/genética , Yarrowia/genética , Yarrowia/metabolismo , Fungos/genética , Fungos/metabolismo , Fungos/fisiologia
14.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792051

RESUMO

Erythritol is a polyol with a sweet taste but low energy value. Thanks to its valuable properties, as well as growing social awareness and nutritional trends, its popularity is growing rapidly. The aim of this study was to increase the effectiveness of erythritol production from glucose using new UV mutants of the yeast Yarrowia lipolytica obtained in the Wratislavia K1 strain. The ability of the new strains to biosynthesize erythritol and utilize this polyol was examined in shake-flask cultures and fed-batch processes conducted in a stirred tank reactor with a total glucose concentration of 300 and 400 g/L. The Wratislavia K1 strain produced erythritol most efficiently (97.5 g/L; 192 h) at an initial glucose concentration of 250 g/L (total: 300 g/L). New strains were assessed under such conditions, and it was noted that the highest erythritol concentration (145 g/L; 183 h) was produced by the K1UV15 strain. A significant improvement in the erythritol biosynthesis efficiency (148 g/L; 150 h) was achieved upon the increase in (NH4)2SO4 to 3.6 g/L. Further, in the culture with such a concentration of the nitrogen source and increased total glucose level (400 g/L), the K1UV15 strain produced 226 g/L of erythritol within 281 h.


Assuntos
Eritritol , Glucose , Mutação , Yarrowia , Eritritol/metabolismo , Yarrowia/metabolismo , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento , Glucose/metabolismo , Fermentação , Raios Ultravioleta , Reatores Biológicos
15.
Yeast ; 41(6): 369-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613186

RESUMO

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Assuntos
Perfilação da Expressão Gênica , Xantofilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica , Transcriptoma , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise do Fluxo Metabólico , Metabolismo dos Lipídeos , Biomassa
16.
ACS Synth Biol ; 13(4): 1332-1342, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38563122

RESUMO

Gastrodin, 4-hydroxybenzyl alcohol-4-O-ß-D-glucopyranoside, has been widely used in the treatment of neurogenic and cardiovascular diseases. Currently, gastrodin biosynthesis is being achieved in model microorganisms. However, the production levels are insufficient for industrial applications. In this study, we successfully engineered a Yarrowia lipolytica strain to overproduce gastrodin through metabolic engineering. Initially, the engineered strain expressing the heterologous gastrodin biosynthetic pathway, which comprises chorismate lyase, carboxylic acid reductase, phosphopantetheinyl transferase, endogenous alcohol dehydrogenases, and a UDP-glucosyltransferase, produced 1.05 g/L gastrodin from glucose in a shaking flask. Then, the production was further enhanced to 6.68 g/L with a productivity of 2.23 g/L/day by overexpressing the key node DAHP synthases of the shikimate pathway and alleviating the native tryptophan and phenylalanine biosynthetic pathways. Finally, the best strain, Gd07, produced 13.22 g/L gastrodin in a 5 L fermenter. This represents the highest reported production of gastrodin in an engineered microorganism to date, marking the first successful de novo production of gastrodin using Y. lipolytica.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica , Glucosídeos/metabolismo , Álcoois Benzílicos/metabolismo
17.
Microb Cell Fact ; 23(1): 101, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566056

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS: In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS: A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.


Assuntos
Yarrowia , Fermentação , Yarrowia/metabolismo , Caproatos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos/metabolismo , Ácidos/metabolismo , Perfilação da Expressão Gênica , Carbono/metabolismo
18.
J Agric Food Chem ; 72(15): 8664-8673, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564669

RESUMO

Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of ß-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of ß-carotene 15,15'-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.


Assuntos
Vitamina A , Yarrowia , Humanos , Vitamina A/metabolismo , Fermentação , Yarrowia/genética , Yarrowia/metabolismo , Reatores Biológicos , beta Caroteno/metabolismo , Redes e Vias Metabólicas , Engenharia Metabólica
19.
J Agric Food Chem ; 72(17): 9984-9993, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635942

RESUMO

Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.


Assuntos
Recombinação Homóloga , Engenharia Metabólica , Esqualeno , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Esqualeno/metabolismo , Fermentação , Ácido Mevalônico/metabolismo
20.
Int. microbiol ; 27(2): 581-596, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-232303

RESUMO

Erythritol has been produced by various microorganisms including Yarrowia, Moniliella, Aureobasidium, and Candida strains. Due to its relatively high price, erythritol sweetener is used lesser than other polyols despite having many advantages. Therefore, in this study, Moniliella pollinis strain was improved for erythritol production by chemical mutagenesis and subsequently screening for cost-effective carbon sources for the enhanced erythritol yield. M. pollinis was subjected to N-methyl N-nitro N-nitroso guanidine (NTG), ethyl methyl sulfonate (EMS), and UV mutagenesis for improved erythritol production. The fmutant strains were evaluated for enhanced erythritol production medium optimization by using different carbon substrates at the shake flask level. To enhance the production of erythritol and statistical media, optimization was carried out using a central composite design (CCD). Among 198 isolated mutants, Mutant-58 strain generated by EMS mutagenesis was selected for further assessment. The Mutant-58 strain showed significant morphological changes as compared to the parent strain. Furthermore, statistically optimized media composition resulted in the higher production of erythritol (91.2 ± 3.4 g/L) with a yield of 40.7 ± 3.4 % in shake flask experiments. The optimized medium composition for erythritol production constitutes (g/L) 225 jaggery, 4.4 yeast extract (YE), 4.4 KH2PO4, 0.31 MgSO4, and pH 5.5. The present study demonstrated strain improvement, media, and process optimization resulting in a 30% increase in the erythritol production in the Mutant-58 as compared to the parent strain. This is also the first instance where jaggery has been used as a cost-effective carbon source alternative to glucose for industrial-scale erythritol production. (AU)


Assuntos
Eritritol , Microrganismos Aquáticos , Yarrowia , Candida , Edulcorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA