RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS: The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS: In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS: The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.
Assuntos
Glicemia , Diabetes Mellitus Experimental , Jejum , Hipoglicemiantes , Extratos Vegetais , Período Pós-Prandial , Animais , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Masculino , Irã (Geográfico) , Ratos , Medicina Persa , Ratos Wistar , Hiperglicemia/tratamento farmacológico , Plantas Medicinais/química , Estreptozocina , Juniperus/químicaRESUMO
The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (µPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the µPADpH. To ensure the color stability of the RCAE for commercial use of the µPADpH, gum arabic was added. The geometric design of the µPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the µPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.
Assuntos
Antocianinas , Brassica , Goma Arábica , Antocianinas/química , Antocianinas/análise , Brassica/química , Concentração de Íons de Hidrogênio , Goma Arábica/química , Papel , Técnicas Analíticas Microfluídicas/instrumentaçãoRESUMO
Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.
Assuntos
Antioxidantes , Hidrogéis , Mangifera , Extratos Vegetais , Reologia , Amido , Mangifera/química , Hidrogéis/química , Extratos Vegetais/química , Amido/química , Antioxidantes/química , Viscosidade , Frutas/química , Fenóis/químicaRESUMO
Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.
Assuntos
Cerveja , Fermentação , Probióticos , Paladar , Compostos Orgânicos Voláteis , Cerveja/análise , Cerveja/microbiologia , Probióticos/metabolismo , Probióticos/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Humanos , Digestão , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Viabilidade MicrobianaRESUMO
Mass spectrometry can gain analytical interpretability by studying complementarity and synergy between the data obtained by the same technique. To explore its potential in an untargeted metabolomic application, the objective of this work was to obtain organic and aqueous coffee extracts of three coffee Canephora groups produced in Brazil with distinctive aspects: geographical origin and botanical variety. Aqueous and organic extracts of roasted coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry. Due to the large number of samples, the injector of the liquid chromatography system was used to automate the analysis. The column was removed, and a peak tube was added to connect the system directly to the mass spectrometer to inject both polar and nonpolar fractions of the coffee extracts individually. The technique provided characteristic fingerprinting mass spectra that not only allowed for differentiation of geographical origins but also between robusta and conilon botanical varieties. The mass spectra of the organic and water extracts represented two separate data blocks to be analyzed by the ComDim-ICA multi-block data analysis method. While the classical ComDim is based on applying PCA to the iteratively reweighted concatenated matrices, in the ComDim-ICA, the factorization is done using independent components analysis, which promotes specific improvements since it is based on extracting components that are statistically independent of one another. The results highlighted by ComDim-ICA show that both water and organic extracts contributed with important ions to the characterization of the coffee composition. However, the results revealed a high variability of metabolomic composition within each botanical variety (Robusta Amazônico and Conilon Capixaba) and geographical provenance (Rondônia indigenous-1, Rondônia non-indigenous-2 and Espírito Santo-3). Even so, water mass spectra differentiated the botanical variety Conilon from Robusta based on significant ions related to trigonelline, caffeic acid, caffeoylquinic acid, and methylpyridinium; both water and organic mass spectra differentiated Rondônia indigenous from Rondônia non-indigenous and Espírito Santo Conilon based on significant ions related to benzoic acid, pentose, coumaric acid, caffeine in the organic extract and malonic acid, pentose, caffeoylquinic acid, methyl pyridinium, caffeine, and sucrose present in the water extract. With the proposed approach acquiring ion fingerprints of different coffee extracts and their subsequent analysis by ComDim-ICA, new complementary chemical aspects of Brazilian Coffea canephora were put in evidence.
Assuntos
Coffea , Extratos Vegetais , Coffea/química , Brasil , Extratos Vegetais/química , Extratos Vegetais/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Componente Principal , Geografia , Café/química , Espectrometria de Massas/métodosRESUMO
The indiscriminate use of pesticides in agriculture demands the development of devices capable of monitoring contaminations in food supplies, in the environment and biological fluids. Simplicity, easy handling, high sensitivities, and low limits-of-detection (LOD) and quantification are some of the required properties for these devices. In this work, we evaluated the effect of incorporating gold nanoparticles into indigo carmine-doped polypyrrole during the electropolymerization of films for use as an acetylcholinesterase (AChE) enzyme-based biosensor. As proof of concept, the pesticide methyl parathion was tested towards the inhibition of AChE. The enzyme was immobilized simply by drop-casting a solution, eliminating the need for any prior surface modification. The biosensors were characterized with cyclic voltammetry, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The assays for the detection of methyl parathion with films containing polypyrrole, indigo carmine and AChE (PPy-IC-AChE) presented a sensitivity of 5.7 µA cm-2 g-1 mL and a LOD of 12 nmol L-1 (3.0 ng L-1) with a linear range from 1.3 x 10-7 mol L-1 to 1.0 x 10-5 mol L-1. The introduction of gold nanoparticles (AuNP) into the film (PPy-IC-AuNP-AChE) led to remarkable improvements on the overall performance, such as a lower redox potential for the enzymatic reaction, a 145 % increase in sensitivity (14 µA cm-2 g-1 mL), a wider detection dynamic range (from 1.3x10-7 to 1.0x10-3 mol L-1), and a very low LOD of 24 fmol L-1 (64 ag mL-1). These findings underscore the potential of using AuNPs to improve the enzymatic performance of biosensor devices.
Assuntos
Acetilcolinesterase , Técnicas Biossensoriais , Técnicas Eletroquímicas , Enzimas Imobilizadas , Ouro , Nanopartículas Metálicas , Metil Paration , Praguicidas , Polímeros , Pirróis , Ouro/química , Pirróis/química , Polímeros/química , Nanopartículas Metálicas/química , Praguicidas/análise , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Metil Paration/análise , Limite de DetecçãoRESUMO
Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.
Assuntos
Cocos , Lipase , Lipase/isolamento & purificação , Lipase/química , Lipase/biossíntese , Lipase/metabolismo , Cocos/química , Óleos de Plantas/química , Fermentação , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genéticaRESUMO
Textured vegetable proteins (TVP) are an alternative to meet the increasing demand for non-animal food. This study aimed to develop a TVP from mixtures with 45 % pea protein isolate (PPI) enriched with amaranth (AF) and oat (OF) flours using high-moisture extrusion technology (HME) varying the moisture (50-70 %) and the temperature in the second heating zone of the extruder (110-140 °C). After extrusion, all samples demonstrated higher values of water absorption capacity (WAC) than non-extruded mixtures. Mixture of AF:OF:PPI (40:15:45 %) extruded at 60 % moisture and 135 °C showed promising functional properties with WAC and WSI values of 3.2 ± 0.2 g H2O/g and 24.89 ± 2.31 %, respectively, and oil absorption capacity (OAC) of 1.3 g oil/g. The extrusion process altered the thermal and structural properties of proteins promoting a desirable fibrous structure. This confirms the feasibility of using HME to develop TVP based on PPI, AF, and OF.
Assuntos
Amaranthus , Avena , Farinha , Pisum sativum , Água , Amaranthus/química , Farinha/análise , Avena/química , Pisum sativum/química , Água/química , Proteínas de Ervilha/química , Manipulação de Alimentos , Proteínas de Plantas/química , Temperatura AltaRESUMO
The influence of oxygen on the thermal treatment (TT) of secondary metabolite-enriched extracts (SMEEs) from Tórtola beans and procyanidin C1 (PC1) on the inhibition of advanced glycation end products (AGEs) generation in proteins was investigated. SMEE was incubated at 4 °C (control) or thermally treated at 60 °C for 2 h, at either 0 % O2 (I) or 20 % O2 (II). Treatments I and II increased the content of procyanidin dimers B2. Treatment II was more effective than the control or treatment I in preventing homocysteine oxidation and AGEs generation. TT of PC1 at 0 % or 20 % O2 generated procyanidin dimers and tetramers. PC1 TT at 20 % O2 exhibited higher oxidation potentials and lower IC50 values of fluorescent AGEs than those of controls or TT at 0 % O2. These findings indicate that SMEE from Tórtola beans after treatment II changes the degree of polymerization and oxidation procyanidins, thereby increasing their antiglycation activity.
Assuntos
Antioxidantes , Biflavonoides , Produtos Finais de Glicação Avançada , Temperatura Alta , Oxirredução , Phaseolus , Extratos Vegetais , Proantocianidinas , Proantocianidinas/química , Proantocianidinas/farmacologia , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Biflavonoides/farmacologia , Biflavonoides/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Phaseolus/química , Catequina/química , Catequina/farmacologia , Glicosilação , ChileRESUMO
This study aimed to compare the effects of two extraction techniques (conventional n-hexane and supercritical CO2) on the oil extraction yields, fatty acids profile, anti-hyaluronidase activity, oxidative stability, and in vitro bioactivities of oils from Sacha Inchi (Plukenetia volubilis). Higher oil extraction yield (99 %) was achieved using the SC-CO2, although similar fatty acids profiles were depicted between both treatments (p < 0.05). The SC-CO2 oil presented higher anti-hyaluronidase (31 %) activity, but lower oxidative stability (5.05 h) compared to the solvent extraction (10 %, and 5.3 h, respectively). In vitro assays further revealed that the best human normal colon cells (FHC) cell viability (100 %), anti-inflammatory (50 % lower NO production), and antioxidant (20 % ROS reduction) activities were consistently observed in both extraction treatments at concentrations of 50 µg/mL and higher. These findings highlight the potential of supercritical CO2 extraction in yielding Sacha Inchi oil with enhanced bioactive properties without the disadvantages of the use of organic solvents extraction.
Assuntos
Cromatografia com Fluido Supercrítico , Óleos de Plantas , Cromatografia com Fluido Supercrítico/métodos , Humanos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Óleos de Plantas/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Ácidos Graxos/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , OxirreduçãoRESUMO
A trending problem of Extra Virgin Olive Oil (EVOO) adulteration is investigated using two analytical platforms, involving: (1) Near Infrared (NIR) spectroscopy, resulting in a two-way data set, and (2) Fluorescence Excitation-Emission Matrix (EEFM) spectroscopy, producing three-way data. The related instruments were employed to study genuine and adulterated samples. Each data set was first separately analyzed using the Data Driven-Soft Independent Modeling of Class Analogies (DD-SIMCA) method, based on Principal Component Analysis (for the two-way NIR data) and PARallel FACtor analysis (for the three-way EEFM data). The data sets were then processed together using the multi-block fusion method, based on the concept of Cumulative Analytical Signal (CAS). A comparison of the data processing methods in terms of sensitivity, specificity and selectivity showed the following order of excellence: NIR < EEFM < NIR + EEFM. This finding confirms the effectiveness of multi-block data fusion, which cumulatively improves the model performance.
Assuntos
Contaminação de Alimentos , Azeite de Oliva , Espectroscopia de Luz Próxima ao Infravermelho , Azeite de Oliva/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Contaminação de Alimentos/análise , Espectrometria de Fluorescência/métodos , Análise de Componente PrincipalRESUMO
Milk oligosaccharides are high added value compounds that could be obtained by exploiting cheese whey, a byproduct of dairy industry. The objective was to compare the abundance and diversity of oligosaccharides in whey samples from domestic animals and humans. During fresh cheese making, whey samples were collected and analyzed by untargeted and targeted small molecule analysis using high-resolution mass-spectrometry. A great similarity in the metabolite profile between goat and sheep was observed. Up to 11 oligosaccharides were observed in the sheep whey from those typically found in humans. The concentration of 2'-Fucosyllactose (0.136 ± 0.055 g/L) and 3-Fucosyllactose (0.079 ± 0.009 g/L) were significantly higher (p-value <0.01) in sheep whey, while the concentration of 3'-Sialyllactose (0.826 ± 0.638 g/L) was higher in goat whey. No significant differences were observed between goat and sheep whey for the other oligosaccharides (p-value >0.05). Therefore, sheep and goat whey could become an important source of oligosaccharides through their revalorization.
Assuntos
Cabras , Leite Humano , Oligossacarídeos , Soro do Leite , Animais , Ovinos/metabolismo , Oligossacarídeos/química , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Soro do Leite/química , Soro do Leite/metabolismo , Humanos , Leite Humano/química , Bovinos/metabolismo , Leite/química , Queijo/análiseRESUMO
Blue maize is used in the production of various traditional foods, and its phytochemical composition has been claimed to possess health benefits. In this study, two blue maize hybrids with pigmented germ grown in five environments were studied under the hypothesis that the germ could have a different anthocyanin profile from that of anthocyanins synthesized in the aleurone layer, and that those in the germ could increase the total anthocyanin content in the whole grain. The percentage of pigmented germ, total anthocyanin content (TA) and total soluble phenols in the germ, whole grain and tortilla were evaluated to determine how tortilla color is modified. For the first time, the anthocyanin and fatty acid profiles of pigmented germ were determined. In the anthocyanin profile, anthocyanins derived from peonidin stood out, making 50.7 %. The most abundant fatty acid was linoleic acid (40.6 %). Whole kernel TA content increased when the maize had a higher percentage of pigmented germ, with minimal changes when grain was transformed to tortilla, resulting in darker tortillas. The large variation in TA among environments highlights the importance of identifying the environments that most favor anthocyanin synthesis.
Assuntos
Antocianinas , Compostos Fitoquímicos , Sementes , Zea mays , Zea mays/química , Zea mays/crescimento & desenvolvimento , Antocianinas/análise , Antocianinas/química , Sementes/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Cor , Fenóis/análise , Fenóis/química , Ácidos Graxos/química , Ácidos Graxos/análiseRESUMO
Native stingless bees (Meliponini) from Brazil make (geo)propolis which is largely used in folk medicine, specially by indigenous and quilombos communities and beekeepers´ families but are progressively being recognized for their pharmacological activities. In this study, the ethanolic extracts of (geo)propolis (EEGs) from Melipona marginata, M. quadrifasciata, M. scutellaris, and Tetragonisca angustula were analysed by Flow injection analysis (FIA) and Ultra-high performance liquid chromatography (UHPLC) in a high resolution Orbitrap mass analyser (HRMS) to investigate and compare their chemical profile. Untargeted metabolomic approach based on UHPLC-HRMS experiments, and bioinformatic tools, allowed to annotate 59 compounds from diverse classes such as: flavonoids, phenolic compounds, sugars, terpenoids, and lipids. In addition, using multivariate tools and Flow injection- high resolution mass spectrometry (FIA-HRMS), it was possible to classify samples and identify marker ions related to the bee species or genus and to the geographical origin as a proof of concept.
Assuntos
Espectrometria de Massas , Metabolômica , Própole , Abelhas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Brasil , Própole/química , Própole/análise , Espectrometria de Massas/métodos , Análise de Injeção de Fluxo/métodos , Flavonoides/análise , Fenóis/análiseRESUMO
This study aimed to explore the differences in the lipidome and mitochondrial fraction metabolome of Nellore cattle meat in different ranges of ultimate pH (pHu) normal (≤5.79), intermediate (5.80 to 6.19) and high (≥ 6.20) after 3- and 21-d postmortem. Instrumental color, myoglobin redox state, oxygen consumption, and metmyoglobin-reducing activity were measured during storage. A total of 472 lipids and 22 mitochondrial fraction metabolites were identified. Beef with high pHu showed positive regulation of ceramides involved in apoptosis and negative regulation of lipid classes related to membrane permeability and stability. In addition, lower carnitine content was noted in high-pHu beef than in normal-pHu beef. Acylcarnitines, phosphatidylinositol, and IMP showed upregulation in beef with intermediate pHu, indicating changes mainly related to energy, purine and pyruvate metabolism. Aging time impacted on the lipid content and metabolites involved in different metabolic pathways. These results provided new insights into beef's mitochondrial fraction lipid and metabolic profile with different pHu. In addition, beef with intermediate pHu differs from beef with high pHu due to changes in energy metabolism.
Assuntos
Cor , Músculo Esquelético , Carne Vermelha , Animais , Bovinos , Carne Vermelha/análise , Concentração de Íons de Hidrogênio , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Metaboloma , Mioglobina/metabolismo , Lipídeos/análise , Lipídeos/química , Metabolismo dos Lipídeos , Consumo de OxigênioRESUMO
This study focuses on the extraction of bioactive compounds from Quercus sideroxyla Bonpl., leaves which have been shown to possess health benefits. The extraction process was done using pressurized liquid extraction (PLE), which is efficient and preserves heat-sensitive compounds. Key factors in the process included the choice of solvents, pressure, temperature, and extraction duration. The Hansen solubility parameters analysis aided in selecting effective solvents, such as ethanol and benzyl alcohol. The extracts were found to contain phenolic compounds, flavonoids, and polyphenols with antioxidant properties. The UPLC-PDA-ESI-QqQ was employed for the precise identification and quantification of these compounds, demonstrating superior extraction of quinic acid and gallic acid at elevated temperatures. Notably, the extracts obtained through PLE exhibited significant inhibitory activity of the MAO-A enzyme, linked to neuronal and cognitive health, suggesting potential benefits in these areas.
Assuntos
Antioxidantes , Inibidores da Monoaminoxidase , Monoaminoxidase , Extratos Vegetais , Folhas de Planta , Polifenóis , Quercus , Antioxidantes/química , Antioxidantes/farmacologia , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/isolamento & purificação , Quercus/química , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Solventes/química , Cromatografia Líquida de Alta PressãoRESUMO
Population growth is driving the search for new food sources, including entomophagy, i.e., a diet based on edible insects. Insect powder are rich in essential fatty acids, minerals, vitamins, and bioactive compounds such as antioxidant phenolics. The technologies for extracting oil from insects must be efficient to guarantee high yields. This oil due to its favorable nutritional profile, and lower cost, can be a viable alternative to vegetable and fish oils. Although common in some cultures, the consumption of insects faces resistance in others due to its association with dirt. Efforts are being made to scientifically demonstrate the safety and nutritional benefits of insects as well as their sustainability as a food source. This first review of insect oils focuses on presenting their different characteristics and encouraging the production and use of these products in the food, pharmaceutical, or cosmetics industries.
Assuntos
Insetos Comestíveis , Animais , Insetos Comestíveis/química , Óleos/química , Óleos/isolamento & purificação , Insetos/químicaRESUMO
Li6ZnO4 was chemically modified by nickel addition, in order to develop different compositions of the solid solution Li6Zn1-xNixO4. These materials were evaluated bifunctionally; analyzing their CO2 capture performances, as well as on their catalytic properties for H2 production via dry reforming of methane (DRM). The crystal structures of Li6Zn1-xNixO4 solid solution samples were determined through X-ray diffraction, which confirmed the integration of nickel ions up to a concentration around 20 mol%, meanwhile beyond this value, a secondary phase was detected. These results were supported by XPS and TEM analyses. Then, dynamic and isothermal thermogravimetric analyses of CO2 capture revealed that Li6Zn1-xNixO4 solid solution samples exhibited good CO2 chemisorption efficiencies, similarly to the pristine Li6ZnO4 chemisorption trends observed. Moreover, a kinetic analysis of CO2 isothermal chemisorptions, using the Avrami-Erofeev model, evidenced an increment of the constant rates as a function of the Ni content. Since Ni2+ ions incorporation did not reduce the CO2 capture efficiency and kinetics, the catalytic properties of these materials were evaluated in the DRM process. Results demonstrated that nickel ions favored hydrogen (H2) production over the pristine Li6ZnO4 phase, despite a second H2 production reaction was determined, methane decomposition. Thereby, Li6Zn1-xNixO4 ceramics can be employed as bifunctional materials.
Assuntos
Dióxido de Carbono , Hidrogênio , Metano , Hidrogênio/química , Metano/química , Dióxido de Carbono/química , Níquel/química , Catálise , Modelos QuímicosRESUMO
This contribution describes the development of a simple, fast, cost-effective, and sensitive impedimetric immunosensor for quantifying bovine tuberculosis (TB) in bovine serum samples. The construction of the immunosensor involved immobilizing the purified protein derivative (PPD) of M. bovis onto a screen-printed electrode that was modified with gold nanoparticles (AuNPs) and a polypyrrole (pPy) film synthesized electrochemically. The immunosensor exhibited a linear range from 0.5 µg mL-1 to 100 µg mL-1 and achieved a limit of detection (LD) of 100 ng mL-1 for the detection of anti-M. bovis antibody. The recovery percentages obtained in bovine serum samples were excellent, ranging between 98 % and 103 %. This device presents several advantages over alternative methods for determining TB in bovine serum samples. These include direct, in situ measurement without the need for pre-treatment, utilization of small volumes, thus avoiding harmful solvents and expensive reagents, and portability. In addition, the immunosensor exhibits both physical and chemical stability, retaining effectiveness even after 30 days of modification. This allows simultaneous incubations and facilitates large-scale detection. Hence, this immunosensor presents itself as a promising diagnostic tool for detecting anti-M. bovis antibodies in bovine serum. It serves as a viable alternative to tuberculin and ELISA tests.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Tuberculose Bovina , Animais , Bovinos , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/sangue , Tuberculose Bovina/imunologia , Ouro/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Mycobacterium bovis/imunologia , Polímeros/química , Pirróis/química , Eletrodos , Limite de Detecção , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologiaRESUMO
In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments. Here, we apply X-ray photon correlation spectroscopy (XPCS) to investigate silica nanoparticles (SiO2) in various environments, ranging from low to high complex biological media. Interestingly, SiO2 revealed Brownian motion behavior, irrespective of the complexity of the chosen media. Moreover, the SiO2 surface and media composition were tailored to underline the differences between a corona-free system from protein corona and aggregates formation. Our results highlighted XPCS potential for real-time nanoparticle analysis in biological media, surpassing the limitations of conventional techniques and offering deeper insights into colloidal behavior in complex environments.