Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160.632
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241229367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38297814

RESUMO

Objective: To investigate the dosimetric effects of using individualized silicone rubber (SR) bolus on the target area and organs at risk (OARs) during postmastectomy radiotherapy (PMRT), as well as evaluate skin acute radiation dermatitis (ARD). Methods: A retrospective study was performed on 30 patients with breast cancer. Each patient was prepared with an individualized SR bolus of 3 mm thickness. Fan-beam computed tomography (FBCT) was performed at the first and second fractions, and then once a week for a total of 5 times. Dosimetric metrics such as homogeneity index (HI), conformity index (CI), skin dose (SD), and OARs including the heart, lungs, and spinal cord were compared between the original plan and the FBCTs. The acute side effects were recorded. Results: In targets' dosimetric metrics, there were no significant differences in Dmean and V105% between planning computed tomography (CT) and actual treatments (P > .05), while the differences in D95%, V95%, HI, and CI were statistically significant (P < .05). In OARs, there were no significant differences between the Dmean, V5, and V20 of the affected lung, V5 of the heart and Dmax of the spinal cord (P > .05) except the V30 of affected lung, which was slightly lower than the planning CT (P < .05). In SD, both Dmax and Dmean in actual treatments were increased than plan A, and the difference was statistically significant (P < .05), while the skin-V20 and skin-V30 has no difference. Among the 30 patients, only one patient had no skin ARD, and 5 patients developed ARD of grade 2, while the remaining 24 patients were grade 1. Conclusion: The OR bolus showed good anastomoses and high interfraction reproducibility with the chest wall, and did not cause deformation during irradiation. It ensured accurate dose delivery of the target and OARs during the treatment, which may increase SD by over 101%. In this study, no cases of grade 3 skin ARD were observed. However, the potential of using OR bolus to reduce grade 1 and 2 skin ARD warrants further investigation with a larger sample size.


Assuntos
Neoplasias da Mama , Dermatite , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Elastômeros de Silicone , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos , Reprodutibilidade dos Testes , Mastectomia/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Dermatite/cirurgia , Órgãos em Risco/efeitos da radiação
2.
Sci Prog ; 107(1): 368504241228668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385346

RESUMO

OBJECTIVE: This study aimed to investigate the effects of low-dose radiation on the abdominal aorta of mice and vascular endothelial cells. METHODS: Wild-type and tumor-bearing mice were exposed to 15 sessions of low-dose irradiation, resulting in cumulative radiation doses of 187.5, 375, and 750 mGy. The effect on the cardiovascular system was assessed. Immunohistochemistry analyzed protein expressions of PAPP-A, CD62, P65, and COX-2 in the abdominal aorta. Microarray technology, Gene Ontology analysis, and pathway enrichment analysis evaluated gene expression changes in endothelial cells exposed to 375 mGy X-ray. Cell viability was assessed using the Cell Counting Kit 8 assay. Immunofluorescence staining measured γ-H2AX levels, and real-time polymerase chain reaction quantified mRNA levels of interleukin-6 (IL-6), ICAM-1, and Cx43. RESULTS: Hematoxylin and eosin staining revealed thickening of the inner membranes and irregular arrangement of smooth muscle cells in the media membrane at 375 and 750 mGy. Inflammation was observed in the inner membranes at 750 mGy, with a clear inflammatory response in the hearts of tumor-bearing mice. Immunohistochemistry indicated increased levels of PAPP-A, P65, and COX-2 post-irradiation. Microarray analysis showed 425 up-regulated and 235 down-regulated genes, associated with processes like endothelial cell-cell adhesion, IL-6, and NF-κB signaling. Cell Counting Kit 8 assay results indicated inhibited viability at 750 mGy in EA.hy926 cells. Immunofluorescence staining demonstrated a dose-dependent increase in γ-H2AX foci. Reverse transcription quantitative PCR results showed increased expression of IL6, ICAM-1, and Cx43 in EA.hy926 cells post 750 mGy X-ray exposure. CONCLUSION: Repeated low-dose ionizing radiation exposures triggered the development of pro-atherosclerotic phenotypes in mice and damage to vascular endothelial cells.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Molécula 1 de Adesão Intercelular/metabolismo , Conexina 43/genética , Interleucina-6/genética , Ciclo-Oxigenase 2/genética , Proteína Plasmática A Associada à Gravidez , Radiação Ionizante , Fenótipo
3.
Sci Rep ; 14(1): 4339, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383619

RESUMO

DNA double-strand breaks (DSBs) are considered the most relevant lesions to the DNA damage of ionizing radiation (IR), and γ-H2AX foci in peripheral blood lymphocytes are regarded as an adequate marker for DSB quantitative studies. This study aimed to investigate IR-induced DNA damage in mice through γ-H2AX fluorescence analyses by flow cytometry (FCM). The levels of γ-H2AX in CD4/CD8/B220-positive lymphocytes were quantified by FCM through mean fluorescence intensity (MFI) values. Peripheral venous blood samples were collected for evaluation, and all the control groups were restrained from irradiation. For external irradiation experiments, the dose-dependency of MFI values and temporal alternations were assessed both in vitro and in vivo. External radiation exposure damage was positively correlated with the absorbed radiation dose, and the lymphocyte recovered from damage within 3 days. I-131 sodium iodide solution (74 MBq) was injected into the mice intraperitoneally for internal irradiation experiments. Gamma counting and γH2AX foci analyses were performed at 1 h and 24 h by the group. The blood-to-blood S values (Sblood←blood) were applied for the blood-absorbed dose estimation. Internal low-dose-irradiation-induced damage was proved to recover within 24 h. The FCM method was found to be an effective way of quantitatively assessing IR-induced DNA damage.


Assuntos
Histonas , Exposição à Radiação , Camundongos , Animais , Histonas/genética , Radioisótopos do Iodo , Relação Dose-Resposta à Radiação , Citometria de Fluxo/métodos , Linfócitos/efeitos da radiação , Dano ao DNA
4.
Health Phys ; 126(4): 207-215, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300139

RESUMO

ABSTRACT: Radioactive materials and ionizing radiation have both medical value and disease risks, necessitating radiation dose measurement and risk reduction strategies. The International Commission on Radiological Protection (ICRP) lowered the lens of the eye exposure limit, leading to Japan's revised "Ionizing Radiation Ordinance." However, the effects on radiation exposure in medical settings and compliance feasibility remain unclear. To examine the impact of the revision to the "Ionizing Radiation Ordinance" and use it for measures to reduce exposure to radiation, a comprehensive analysis was conducted on data collected from Nagasaki University Hospital, Hiroshima University Hospital, and Fukushima Medical University Hospital in 2018, 2020, and April to September 2021. This included information on age, sex, occupation, department, and monthly radiation doses of workers, aiming to assess the impact of the revision to the "Ionizing Radiation Ordinance" on radiation exposure before and after its enforcement. Out of 9,076 cases studied, 7,963 (87.7%) had radiation doses below the measurable limit throughout the year. Only 292 cases (3.2%) exceeded 1 mSv y -1 , with 9 doctors and 2 radiological technologists surpassing 5 mSv y -1 . Radiological technologists showed significantly higher doses compared to doctors, dentists, and nurses (p < 0.01), while male subjects had significantly higher exposure doses than females (p < 0.01). No significant changes in radiation exposure were observed before and after the revision of the Ionizing Radiation Ordinance; however, variations in radiation exposure control were noted, particularly among nurses and radiological technologists, suggesting the impact of the revision and the need for tailored countermeasures to reduce radiation dose in each group.


Assuntos
Cristalino , Exposição Ocupacional , Exposição à Radiação , Feminino , Humanos , Masculino , Japão , Cristalino/efeitos da radiação , Exposição à Radiação/efeitos adversos , Pessoal de Saúde , Radiação Ionizante , Exposição Ocupacional/análise , Doses de Radiação
5.
Health Phys ; 126(4): 241-248, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381972

RESUMO

ABSTRACT: Concerns have been raised about the possibility of effects from exposure to short wavelength light (SWL), defined here as 380-550 nm, on human health. The spectral sensitivity of the human circadian timing system peaks at around 480 nm, much shorter than the peak sensitivity of daytime vision (i.e., 555 nm). Some experimental studies have demonstrated effects on the circadian timing system and on sleep from SWL exposure, especially when SWL exposure occurs in the evening or at night. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has identified a lack of consensus among public health officials regarding whether SWL from artificial sources disrupts circadian rhythm, and if so, whether SWL-disrupted circadian rhythm is associated with adverse health outcomes. Systematic reviews of studies designed to examine the effects of SWL on sleep and human health have shown conflicting results. There are many variables that can affect the outcome of these experimental studies. One of the main problems in earlier studies was the use of photometric quantities as a surrogate for SWL exposure. Additionally, the measurement of ambient light may not be an accurate measure of the amount of light impinging on the intrinsically photosensitive retinal ganglion cells, which are now known to play a major role in the human circadian timing system. Furthermore, epidemiological studies of long-term effects of chronic SWL exposure per se on human health are lacking. ICNIRP recommends that an analysis of data gaps be performed to delineate the types of studies needed, the parameters that should be addressed, and the methodology that should be applied in future studies so that a decision about the need for exposure guidelines can be made. In the meantime, ICNIRP supports some recommendations for how the quality of future studies might be improved.


Assuntos
Melatonina , Humanos , Ritmo Circadiano/efeitos da radiação , Sono/efeitos da radiação
6.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339151

RESUMO

Photocatalytic technology has been recently conducted to remove microbial contamination due to its unique features of nontoxic by-products, low cost, negligible microbial resistance and broad-spectrum elimination capacity. Herein, a novel two dimensional (2D) g-C3N4/Bi(OH)3 (CNB) heterojunction was fabricated byincorporating Bi(OH)3 (BOH) nanoparticles with g-C3N4 (CN) nanosheets. This CNB heterojunction exhibited high photocatalytic antibacterial efficiency (99.3%) against Escherichia coli (E. coli) under visible light irradiation, which was 4.3 and 3.4 times that of BOH (23.0%) and CN (28.0%), respectively. The increase in specific surface area, ultra-thin layered structure, construction of a heterojunction and enhancement of visible light absorption were conducive to facilitating the separation and transfer of photoinduced charge carriers. Live/dead cell staining, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays and scanning electron microscopy (SEM) have been implemented to investigate the damage to the cell membrane and the leakage of the intracellular protein in the photocatalytic antibacterial process. The e-, h+ and O2•- were the active species involved in this process. This study proposed an appropriate photocatalyst for efficient treatment of bacterial contamination.


Assuntos
Escherichia coli , Grafite , Escherichia coli/efeitos da radiação , Catálise , Grafite/química , Antibacterianos/farmacologia , Antibacterianos/química , Luz
7.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339167

RESUMO

Hair luster is a key attribute of healthy hair and a crucial aspect of cosmetic appeal, reflecting the overall health and vitality of hair. Despite its significance, the advancement of therapeutic strategies for hair luster enhancement have been limited due to the absence of an effective experimental model. This study aimed to establish a novel animal model to assess hair gloss, employing ultraviolet (UV) irradiation on C57BL/6 mice. Specifically, UVB irradiation was meticulously applied to the shaved skin of these mice, simulating conditions that typically lead to hair luster loss in humans. The regrowth and characteristics of the hair were evaluated using a dual approach: an Investigator's Global Assessment (IGA) scale for subjective assessment and an image-based pixel-count method for objective quantification. These methods provided a comprehensive understanding of the changes in hair quality post-irradiation. To explore the potential reversibility of hair luster changes, oral minoxidil was administered, a treatment known for its effects on hair growth and texture. Further, to gain insights into the underlying biological mechanisms, bulk RNA transcriptomic analysis of skin tissue was conducted. This analysis revealed significant alterations in the expression of keratin-associated protein (KRTAP) genes, suggesting modifications in hair keratin crosslinking due to UV exposure. These changes are crucial in understanding the molecular dynamics affecting hair luster. The development of this new mouse model is a significant advancement in hair care research. It not only facilitates the evaluation of hair luster in a controlled setting but also opens avenues for the research and development of innovative therapeutic strategies. This model holds promise for the formulation of more effective hair care products and treatments, potentially revolutionizing the approach towards managing and enhancing hair luster.


Assuntos
Cabelo , Raios Ultravioleta , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Cabelo/efeitos da radiação , Alopecia , Pele , Modelos Animais de Doenças
8.
Sci Total Environ ; 918: 170655, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331292

RESUMO

For the first time, the sequential combination of UVC-LED (276 nm) and photo-Fenton/UVA-LED (376 nm) process has been assessed in continuous flow mode for wastewater reclamation according to the new European Regulation for reuse in agricultural irrigation (EU 2020/741). The results show that it is possible to obtain water quality class B (Escherichia coli ≤ 100 CFU/100 mL) by UVC-LED irradiation alone, operating the system with a hydraulic residence time (HRT) of 6.5 min and liquid depth of 5 cm in the case of secondary effluents with low Escherichia coli load (8.102-3.1.103 CFU/100 mL). As for high bacteria concentrations (1.2-4.2.104 CFU/100 mL), HRTs longer than 30 min are required. The bacterial load has not influenced decontamination, removing 18 ± 4 % of microcontaminants. Coupling the UVC (30-min HRT and 5.0 cm liquid depth) and the UVA/photo-Fenton (60-min and 15-cm liquid depth) systems allows 58 ± 4 % of real organic microcontaminants to be removed, in addition to achieving water quality class B.


Assuntos
Desinfecção , Purificação da Água , Desinfecção/métodos , Peróxido de Hidrogênio , Águas Residuárias , Escherichia coli/efeitos da radiação , Bactérias , Oxirredução
9.
Biomed Phys Eng Express ; 10(2)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38350115

RESUMO

In modern radiation therapy for lung cancer, examining the uncertainty between tumor motion and beam delivery is vitally important. To lower the radiation dose delivery to the patient's normal tissue, narrowing the irradiation field margin to hit the tumor accurately is critical. Thus we proposed a phantom that simulates the thorax and lung tumor's motions by employing a 3D printing technique. The lung tumor is controlled by a linear miniature Delta robot arm, with a maximum displacement of 20 mm in each direction. When we simulated the thoracic breathing movements at 12 mm in A-P (Anterior-Posterior), the control errors were within 10%. The average tracking errors of the prosthetic tumor were within 1.1 mm. Therefore, the 3D-printed phantom with a robot arm can provide a reliable simulation for training and dosimetry measurement before lung radiotherapy, especially SBRT.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Simulação por Computador , Impressão Tridimensional
10.
Lasers Med Sci ; 39(1): 75, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383862

RESUMO

The aim of the study was to investigate the impact of multiwave locked system (MLS M1) emitting synchronized laser radiation at 2 wavelength simultaneous (λ = 808 nm, λ = 905 nm) on the mesenchymal stem cells (MSCs). Human MSCs were exposed to MLS M1 system laser radiation with the power density 195-318 mW/cm2 and doses of energy 3-20 J, in continuous wave emission (CW) or pulsed emission (PE). After irradiation exposure in doses of energy 3 J, 10 J (CW, ƒ = 1000 Hz), and 20 J (ƒ = 2000 Hz), increased proliferation of MSCs was observed. Significant reduction of Fluo-4 Direct™ Ca2+ indicator fluorescence over controls after CW and PE with 3 J, 10 J, and 20 J was noticed. A decrease in fluorescence intensity after the application of radiation with a frequency of 2000 Hz in doses of 3 J, 10 J, and 20 J was observed. In contrary, an increase in DCF fluorescence intensity after irradiation with laser radiation of 3 J, 10 J, and 20 J (CW, ƒ = 1000 Hz and ƒ = 2000 Hz) was also shown. Laser irradiation at a dose of 20 J, emitted at 1000 Hz and 2000 Hz, and 3 J emitted at a frequency of 2000 Hz caused a statistically significant loss of MSC viability. The applied photobiomodulation therapy induced a strong pro-apoptotic effect dependent on the laser irradiation exposure time, while the application of a sufficiently high-energy dose and frequency with a sufficiently long exposure time significantly increased intracellular calcium ion concentration and free radical production by MSCs.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Humanos , Cálcio , Radicais Livres , Apoptose , Necrose , Células-Tronco Mesenquimais/efeitos da radiação
11.
BMC Ophthalmol ; 24(1): 29, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254051

RESUMO

PURPOSES: The aim of this study is to investigate the time evolution of active caspase 3 within first 120 h in the rat lens after in vivo exposure to subthreshold dose of UVR-B. METHODS: Twenty three six-week-old female albino Sprague-Dawley rats were exposed to subthreshold dose (1 kJ/m2) of UVR-B unilaterally and sacrificed at 24, 41, 70 and 120 h after exposure. Lenses were enucleated and active caspase 3 was detected by Western Blot. The time evolution of active caspase 3 was then plotted as a function of relative mean difference in active caspase 3 between exposed and nonexposed lenses. RESULTS: There is expression of active caspase 3 in both exposed and nonexposed lenses but there is no difference in relative mean difference in active caspase 3 between exposed and nonexposed lenses in all four postexposure groups. CONCLUSIONS: Exposure to subthreshold dose of UVR-B does not induce apoptosis in the rat lens in vivo within first 120 h though there is a non-significant increase of active caspase 3 at 120 h. Increase in sample size might reduce the variation level in expression of active caspase 3 in the rat lenses.


Assuntos
Caspase 3 , Cristalino , Raios Ultravioleta , Animais , Feminino , Ratos , Apoptose , Western Blotting , Caspase 3/metabolismo , Caspase 3/efeitos da radiação , Cristalino/metabolismo , Cristalino/efeitos da radiação , Ratos Sprague-Dawley
12.
Nat Commun ; 15(1): 137, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167344

RESUMO

Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.


Assuntos
Lesões por Radiação , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos da radiação , Mucosa Intestinal/metabolismo , Lesões por Radiação/metabolismo , Inflamação/metabolismo , Interleucina-12/metabolismo
13.
J Hazard Mater ; 465: 133429, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232545

RESUMO

TiO2/TiOF2 Z-scheme nanosheets have been successfully synthesized for photocatalytic antibacterial. The antibacterial efficiency of TiO2/TiOF2 against E. coli and S. aureus were 99.90 % and 81.89 % at low material concentration (110 µg/mL), respectively, which are higher than those of pure TiO2, TiOF2, and Degussa P25. In situ molecular spectroscopy results demonstrate that the microstructure of the synthesized material can be reconstructed and optimized to enhance the exposure of the active sites·H2O and O2 are effectively adsorbed on the catalyst surface and activated to form OH…Ti and O…Ti surface active species. Furthermore, the dense interface formed in TiO2/TiOF2 acts as an efficient transport path for photoexcited electrons from TiO2 to TiOF2, and thus accelerates the formation of reactive oxygen species. Finally, the mechanism of bacterial inactivation is systematically discussed considering the main active substances, cell morphological changes, and activity of antioxidant enzymes.


Assuntos
Escherichia coli , Staphylococcus aureus , Escherichia coli/efeitos da radiação , Titânio/química , Luz , Antibacterianos/química
14.
J Appl Clin Med Phys ; 25(2): e14256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38175957

RESUMO

In the context of radiation oncology, radiation exposure from radiation therapy simulation, image guidance, and radiation therapy procedures can have severe adverse biological effects on a developing embryo or fetus. Patients who may be pregnant are screened for the possibility of pregnancy to prevent unnecessary or excessive exposure of radiation in utero. Some radiation therapy patients for whom a pregnancy test is indicated may elect to decline the test. In addition, some patients who are found upon screening to be pregnant may decide, with their attending radiation oncologist, to continue with treatment. A radiation oncology department policy was developed to provide guidelines regarding screening and consent. The policy was designed to prevent unnecessary exposure to patients who may be pregnant, and to limit dose to the embryo or fetus in patients for whom treatment is medically indicated. The policy is presented as an example for physicists intending to develop or revise their own practice's policy regarding patients who may become pregnant.


Assuntos
Exposição à Radiação , Radioterapia (Especialidade) , Gravidez , Feminino , Humanos , Feto/efeitos da radiação , Doses de Radiação
15.
Asian Pac J Cancer Prev ; 25(1): 139-144, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285777

RESUMO

BACKGROUND: Carcinoma of the cervix is a globally significant cause of morbidity and mortality among women. Concurrent chemoradiotherapy, a standard approach for locally advanced cervical cancer, invariably involves pelvic irradiation. Although this strategy is effective, it inevitably affects the pelvic bone marrow, a crucial hematopoietic site, and leads to hematological toxicity The potential of IMRT to spare bone marrow in pelvic irradiation settings has been an area of significant interest, with the aim to mitigate the hematological toxicity associated with pelvic radiotherapy. Radiotherapy techniques have evolved in terms of conformity and normal tissue sparing. Our study intends to explore the use of BM sparing techniques among patients of carcinoma cervix. PATIENTS AND METHODS: Twenty patients of carcinoma cervix FIGO Stage IIIB treated with concurrent chemoradiotherapy were selected for this study. The external contour of bones was delineated on planning CT as a surrogate for BM. We generated three plans on a single patient:1. without BM as the dose constraint, namely N-IMRT plan; 2. with BM constraint, namely BMS-IMRT plan; 3. VMAT plan in which BM constraint was given. The dose volume histogram (DVH) for planning target volume (PTV) and organs at risk (OAR) were analyzed. BM parameters: V10, V20, V30, V40, mean, maximum and minimum dose were compared.  Results: PTV coverage was comparable in all techniques. VMAT plans resulted in superior BM sparing compared with N-IMRT plan (P-<0.001) and BMS-IMRT plan (P-<0.001, 0.021 and 0.001 respectively for V20, V30 and V40). VMAT plans had better CI compared with BMS-IMRT (P-0.002) and N-IMRT (P-0.001) plans. CONCLUSION: Our study adds to the growing evidence that VMAT might be the preferred technique for patients with carcinoma of the cervix undergoing concurrent chemoradiotherapy, as it provides comparable target coverage and better sparing of bone marrow compared to IMRT.


Assuntos
Carcinoma , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/etiologia , Medula Óssea/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Quimiorradioterapia/métodos , Órgãos em Risco/efeitos da radiação , Carcinoma/etiologia
16.
Photodermatol Photoimmunol Photomed ; 40(1): e12943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288770

RESUMO

BACKGROUND: The human skin microbiome is a dynamic ecosystem that plays an important role in skin health. The skin microbiome has been implicated in numerous diseases, and our knowledge surrounding it continues to evolve. A better understanding of the interactions between the environment and the skin microbiome will lead to improvements in skin health. METHODS: This article reviews the published literature surrounding the impact of ultraviolet radiation (UVR) and sunscreen on the skin microbiome. RESULTS: Skin microbes are differentially impacted by UVR, and alterations in the microbiome can be detected following UVR exposure. These changes are related to direct bactericidal effects, alterations in the cutaneous metabolome, and changes in the cutaneous immune system. UV filters used in sunscreen have been shown to have bactericidal effects, and many compounds used in sunscreen emulsions can also negatively impact cutaneous microbes. CONCLUSION: A healthy microbiome has been shown to produce compounds that help protect the skin from UVR, and sunscreen has the potential to reduce the diversity of the skin microbiome. This indicates that designing sunscreen products that both provide protection against UVR and preserve the skin microbiome may offer additional benefits to skin health when compared with traditional sunscreen products.


Assuntos
Protetores Solares , Raios Ultravioleta , Humanos , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Ecossistema , Pele/efeitos da radiação
17.
Lasers Med Sci ; 39(1): 41, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240851

RESUMO

Far infrared (FIR) irradiation is commonly used as a convenient, non-contact, non-invasive treatment for diseases such as myocardial ischemia, diabetes, and chronic kidney disease. In this review, we focus on reviewing the potential therapeutic mechanisms of FIR and its cutting-edge applications in cancer detection. Firstly, we searched the relevant literature in the last decade for systematic screening and briefly summarized the biophysical properties of FIR. We then focused on the possible mechanisms of FIR in wound healing, cardiovascular diseases, and other chronic diseases. In addition, we review recent applications of FIR in cancer detection, where Fourier transform infrared spectroscopy and infrared thermography provide additional diagnostic methods for the medical diagnosis of cancer. Finally, we conclude and look into the future development of FIR for disease treatment and cancer detection. As a high-frequency non-ionizing wave, FIR has the advantages of safety, convenience, and low cost. We hope that this review can provide biological information reference and relevant data support for those who are interested in FIR and related high-frequency non-ionizing waves, to promote the further application of FIR in the biomedical field.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Neoplasias , Insuficiência Renal Crônica , Humanos , Raios Infravermelhos , Cicatrização/efeitos da radiação , Neoplasias/diagnóstico , Neoplasias/terapia
18.
Life Sci Space Res (Amst) ; 40: 97-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245354

RESUMO

Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.


Assuntos
Catarata , Cristalino , Lesões por Radiação , Camundongos , Ratos , Masculino , Feminino , Humanos , Animais , Catarata/etiologia , Catarata/epidemiologia , Catarata/patologia , Lesões por Radiação/epidemiologia , Cristalino/patologia , Cristalino/efeitos da radiação , Raios gama/efeitos adversos , Íons , Relação Dose-Resposta à Radiação
19.
Environ Sci Technol ; 58(5): 2204-2213, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38269402

RESUMO

Ionizing radiation exposure induces significant DNA damage and cell death in aquatic species. Accurate sensing and quantification play pivotal roles in environmental monitoring and surveillance. Zebrafish (Danio rerio) is a well-suited animal model for research into this aspect, especially with recent development of cytogenetic and transgenic tools. In this study, we present time-course studies of chromosome aberrations and cell death in zebrafish embryos exposed to 2 Gy 137Cs total-body irradiation. Using a cytogenetic approach, we quantified chromosome and chromatid aberrations in irradiated embryos at 6, 14, 20, and 24 h postirradiation. Metaphases with aberrations showed rapid declining kinetics, accompanied by incomplete karyotypes and irregular chromatin contents. Using an apoptosis-reporting transgenic zebrafish, we found increasing cell death along these time points, with the embryonic eyes and brain contributing the majority of the cell death volumes. We provide evidence that self-proliferating progenitor cells form the underlying linkage between the two kinetics and their positions define radiosensitive niches in zebrafish embryos. Our results provide detailed chromosome aberration and cell death dynamics in 137Cs-irradiated zebrafish embryos and unveil the appropriate timeline and tissue positions for accurate sensing and quantification of radiation-induced damages in zebrafish embryos.


Assuntos
Aberrações Cromossômicas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Raios gama , Cromossomos , Apoptose , Embrião não Mamífero/efeitos da radiação
20.
J Pharmacol Exp Ther ; 388(2): 624-636, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38182415

RESUMO

The primary response of proliferating bovine pulmonary artery endothelial cells (BPAECs) after X-ray irradiation [≤10 gray (Gy)] is shown to be transient cell-cycle arrest. Accompanying oxidant-linked functional changes within the mitochondria are readily measured, but increased autophagy is not. Radiation-induced apoptosis is negligible in this line-important because cells undergoing apoptosis release oxygen-derived species that can overwhelm/mask the radiation-associated species and their effects that we wish to investigate. Cells irradiated and cultured at 3% oxygen exhibited delayed cell-cycle arrest (6-8 hours after 10 Gy irradiation) compared with those maintained at 20% oxygen (2-4 hours after 10 Gy irradiation). At 3% oxygen, either only during or only after irradiation, results intermediate between 20% and 3% oxygen throughout were obtained. No variability in cell-cycle distribution was observed for unirradiated cells cultured under different prevailing oxygen levels. Mitochondrially localized manganese superoxide dismutase delayed the X-ray-induced cell-cycle changes when over-expressed in BPAEC, indicating superoxide to be one of the key oxygen-derived cytotoxic species involved in the radiobiological response. Also, the peroxynitrite biomarker 3-nitrotyrosine was elevated, whereas hydrogen peroxide levels were not. Lastly, the utility of the BPAEC for screening potential countermeasures to ionizing radiation is demonstrated with some quinoline derivatives. Three of the five compounds appeared mitigative, and all were protective. It is suggested that the oxidation-reduction chemistry of these compounds probably offers a reasonable explanation for their observed ameliorative properties. Furthermore, the results suggest a promising new direction in the search for lead compounds as countermeasures to the effects of ionizing radiation. SIGNIFICANCE STATEMENT: The primary radiological response of proliferating bovine pulmonary artery endothelial cells is cell-cycle arrest, starting soon after X-ray irradiation (1-10 Gy) at 20% O2 but delayed by 4 hours at systemic (3%) O2. Oxygen/superoxide is found to be radio-sensitizing in at least two distinct time windows, during and after the irradiation, with both responses antagonized by various hydroxyquinoline derivatives. Similar responses in many other cell lines are likely to be masked by elevated oxidants associated with apoptosis.


Assuntos
Células Endoteliais , Oxidantes , Animais , Bovinos , Raios X , Oxidantes/farmacologia , Superóxidos , Apoptose/efeitos da radiação , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...