Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557.698
Filtrar
1.
Curr Microbiol ; 81(3): 90, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311651

RESUMO

Toxin-Antitoxin (TA) systems are some small genetic modules in bacteria that play significant roles in resistance and tolerance development to antibiotics. Whole genome sequencing (WGS) is an effective method to analyze TA systems in pathogenic Mycobacteria. However, this study aimed to use a simple and inexpensive PCR-Sequencing approach to investigate the type II TA system. Using data from the WGS of Mycobacterium tuberculosis (M. tuberculosis) strain H37Rv and Mycobacterium bovis (M. bovis) strain BCG, primers specific to the relJK, mazEF3, and vapBC3 gene families were designed by Primer3 software. Following that, a total of 90 isolates were examined using the newly developed PCR assay, consisting of 64 M. tuberculosis and 26 M. bovis isolates, encompassing both 45 rifampin-sensitive and 45 rifampin-resistant strains. Finally, 28 isolates (including 14 rifampin-resistant isolates) were sent for sequencing, and their sequences were aligned and compared to the mentioned reference sequences. The amplicons size of mazEF3, relJK, and vapBC3 genes were 825, 875, and 934 bp, respectively. Furthermore, all tested isolates showed the specific amplicons for these TA families. To evaluate the specificity of the primers, PCR was performed on S. aureus and E.coli isolates. None of the examined samples had the desired amplicons. Therefore, the primers had acceptable specificity. The results indicated that the developed PCR-Sequencing approach can be used to effectively investigate certain types of TA systems. Considering high costs of WGS and difficulty in interpreting its results, such a simple and inexpensive method is beneficial in the evaluation of TA systems in Mycobacteria.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium bovis/genética , Rifampina , Sistemas Toxina-Antitoxina/genética , Staphylococcus aureus/genética , Tuberculose/microbiologia , Reação em Cadeia da Polimerase/métodos
2.
Curr Microbiol ; 81(3): 88, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311656

RESUMO

Antimicrobial peptides (AMPs) stand as a promising alternative to conventional pesticides, leveraging a multifaceted approach to combat plant pathogens. This study focuses on identifying and characterizing the AMP produced by Lactiplantibacillus argentoratensis strain IT, demonstrating potent antibacterial activity against various harmful microorganisms. Evaluation of AMPs' antibacterial activity was conducted through an agar well diffusion assay, a reliable method for assessing secondary metabolite antimicrobial efficacy. The study unveils the antimicrobial potential of the purified extract obtained from Lactiplantibacillus argentoratensis IT, isolated from goat milk. Notably, the AMP exhibited robust antibacterial activity against phytopathogens affecting solanaceous crops, including the Gram-negative Ralstonia solanacearum. Expression conditions and purification methods were optimized to identify the peptide's mass and sequence, utilizing LC-MS and SDS-PAGE. This paper underscores the application potential of Lactiplantibacillus spp. IT as a biocontrol agent for managing bacterial infectious diseases in plants. Results indicate optimal AMP production at 37 °C, with a culture broth pH of 5 during fermentation. The obtained peptide sequence corresponded to peaks at 842.5 and 2866.4 m/z ratio, with a molecular weight of approximately 5 kDa according to tricine SDS-PAGE analysis. In conclusion, this study lays the foundation for utilizing Lactiplantibacillus spp. IT derived AMPs in plant biocontrol strategies, showcasing their efficacy against bacterial phytopathogens. These findings contribute valuable insights for advancing sustainable agricultural practices.


Assuntos
Anti-Infecciosos , Peptídeos , Bactérias , Antibacterianos , Sequência de Aminoácidos , Plantas/microbiologia
3.
Curr Microbiol ; 81(3): 92, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315241

RESUMO

Duckweed-associated actinobacteria are co-existing microbes that affect duckweed growth and adaptation. In this study, we aimed to report a novel actinobacterium species and explore its ability to enhance duckweed growth. Strain DW7H6T was isolated from duckweed, Lemna aequinoctialis. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that the strain was most closely related to Actinomycetospora straminea IY07-55T (99.0%), Actinomycetospora chibensis TT04-21T (98.9%), Actinomycetospora lutea TT00-04T (98.8%) and Actinomycetospora callitridis CAP 335T (98.4%). Chemotaxonomic and morphological characteristics of strain DW7H6T were consistent with members of the genus Actinomycetospora, while average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the draft genomes of this strain and its closely related type strains were below the proposed threshold values used for species discrimination. Based on chemotaxonomic, phylogenetic, phenotypic, and genomic evidence obtained, we describe a novel Actinomycetospora species, for which the name Actinomycetospora lemnae sp. nov. is proposed. The type strain is DW7H6T (TBRC 15165T, NBRC 115294T). Additionally, the duckweed-associated actinobacterium strain DW7H6T was able to enhance duckweed growth when compared to the control, in which the number of fronds and biomass dry weight were increased by up to 1.4 and 1.3 fold, respectively. Moreover, several plant-associated gene features in the genome of strain DW7H6T potentially involved in plant-microbe interactions were identified.


Assuntos
Actinobacteria , Actinomycetales , Araceae , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Actinobacteria/genética , Araceae/genética , Araceae/microbiologia , Técnicas de Tipagem Bacteriana
4.
PLoS One ; 19(2): e0287893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324542

RESUMO

Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.


Assuntos
Helmintos , Parasitos , Plasmodium , Humanos , Animais , Peru/epidemiologia , Prevalência , Zoonoses/epidemiologia , Animais Selvagens/microbiologia , Haplorrinos , Saguinus
5.
PLoS Biol ; 22(2): e3002205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300958

RESUMO

Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/metabolismo , Biofilmes , Infecções por Pseudomonas/microbiologia , Fímbrias Bacterianas
6.
Sci Rep ; 14(1): 2906, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316872

RESUMO

Diazotrophic cyanobacteria such as Trichodesmium play a crucial role in the nitrogen budget of the oceans due to their capability to bind atmospheric nitrogen. Little is known about their interoceanic transport pathways and their distribution in upwelling regions. Trichodesmium has been detected using a Video Plankton Recorder (VPR) mounted on a remotely operated towed vehicle (TRIAXUS) in the southern and northern Benguela Upwelling System (BUS) in austral autumn, Feb/Mar 2019. The TRIAXUS, equipped with a CTD as well as fluorescence and nitrogen sensors, was towed at a speed of 8 kn on two onshore-offshore transects undulating between 5 and 200 m over distances of 249 km and 372 km, respectively. Trichodesmium was not detected near the coast in areas of freshly upwelled waters but was found in higher abundances offshore on both transects, mainly in subsurface water layers down to 80 m depth with elevated salinities. These salinity lenses can be related to northward moving eddies that most probably have been detached from the warm and salty Agulhas Current. Testing for interaction and species-habitat associations of Trichodesmium colonies with salinity yielded significant results, indicating that Trichodesmium may be transported with Agulhas Rings from the Indian Ocean into the Atlantic Ocean.


Assuntos
Trichodesmium , Trichodesmium/metabolismo , Água do Mar/microbiologia , Oceano Atlântico , Fixação de Nitrogênio , Oceano Índico , Nitrogênio/metabolismo
8.
Nat Microbiol ; 9(2): 421-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316928

RESUMO

Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.


Assuntos
Microbiota , Rizosfera , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo/química , Plantas , Carbono
9.
BMC Bioinformatics ; 25(1): 58, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317062

RESUMO

BACKGROUND: Data from microbiomes from multiple niches is often collected, but methods to analyse these often ignore associations between niches. One interesting case is that of the oral microbiome. Its composition is receiving increasing attention due to reports on its associations with general health. While the oral cavity includes different niches, multi-niche microbiome data analysis is conducted using a single niche at a time and, therefore, ignores other niches that could act as confounding variables. Understanding the interaction between niches would assist interpretation of the results, and help improve our understanding of multi-niche microbiomes. METHODS: In this study, we used a machine learning technique called latent Dirichlet allocation (LDA) on two microbiome datasets consisting of several niches. LDA was used on both individual niches and all niches simultaneously. On individual niches, LDA was used to decompose each niche into bacterial sub-communities unveiling their taxonomic structure. These sub-communities were then used to assess the relationship between microbial niches using the global test. On all niches simultaneously, LDA allowed us to extract meaningful microbial patterns. Sets of co-occurring operational taxonomic units (OTUs) comprising those patterns were then used to predict the original location of each sample. RESULTS: Our approach showed that the per-niche sub-communities displayed a strong association between supragingival plaque and saliva, as well as between the anterior and posterior tongue. In addition, the LDA-derived microbial signatures were able to predict the original sample niche illustrating the meaningfulness of our sub-communities. For the multi-niche oral microbiome dataset we had an overall accuracy of 76%, and per-niche sensitivity of up to 83%. Finally, for a second multi-niche microbiome dataset from the entire body, microbial niches from the oral cavity displayed stronger associations to each other than with those from other parts of the body, such as niches within the vagina and the skin. CONCLUSION: Our LDA-based approach produces sets of co-occurring taxa that can describe niche composition. LDA-derived microbial signatures can also be instrumental in summarizing microbiome data, for both descriptions as well as prediction.


Assuntos
Microbiota , Feminino , Humanos , Boca/microbiologia , Bactérias/genética , Saliva , Pele/microbiologia
10.
Respir Res ; 25(1): 72, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317180

RESUMO

BACKGROUND: Pneumocystis pneumonia (PCP) is a life-threatening opportunistic fungal infection with a high mortality rate in immunocompromised patients, ranging from 20 to 80%. However, current understanding of the variation in host immune response against Pneumocystis across different timepoints is limited. METHODS: In this study, we conducted a time-resolved single-cell RNA sequencing analysis of CD45+ cells sorted from lung tissues of mice infected with Pneumocystis. The dynamically changes of the number, transcriptome and interaction of multiply immune cell subsets in the process of Pneumocystis pneumonia were identified according to bioinformatic analysis. Then, the accumulation of Trem2hi interstitial macrophages after Pneumocystis infection was verified by flow cytometry and immunofluorescence. We also investigate the role of Trem2 in resolving the Pneumocystis infection by depletion of Trem2 in mouse models. RESULTS: Our results characterized the CD45+ cell composition of lung in mice infected with Pneumocystis from 0 to 5 weeks, which revealed a dramatic reconstitution of myeloid compartments and an emergence of PCP-associated macrophage (PAM) following Pneumocystis infection. PAM was marked by the high expression of Trem2. We also predicted that PAMs were differentiated from Ly6C+ monocytes and interacted with effector CD4+ T cell subsets via multiple ligand and receptor pairs. Furthermore, we determine the surface markers of PAMs and validated the presence and expansion of Trem2hi interstitial macrophages in PCP by flow cytometry. PAMs secreted abundant pro-inflammation cytokines, including IL-6, TNF-α, GM-CSF, and IP-10. Moreover, PAMs inhibited the proliferation of T cells, and depletion of Trem2 in mouse lead to reduced fungal burden and decreased lung injury in PCP. CONCLUSION: Our study delineated the dynamic transcriptional changes in immune cells and suggests a role for PAMs in PCP, providing a framework for further investigation into PCP's cellular and molecular basis, which could provide a resource for further discovery of novel therapeutic targets.


Assuntos
Pneumocystis , Pneumonia por Pneumocystis , Humanos , Camundongos , Animais , Pneumonia por Pneumocystis/genética , Macrófagos/metabolismo , Pulmão/microbiologia , Inflamação/metabolismo , Imunidade , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
11.
Vet Res ; 55(1): 15, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317242

RESUMO

This study investigated the role of causative infectious agents in ulceration of the non-glandular part of the porcine stomach (pars oesophagea). In total, 150 stomachs from slaughter pigs were included, 75 from pigs that received a meal feed, 75 from pigs that received an equivalent pelleted feed with a smaller particle size. The pars oesophagea was macroscopically examined after slaughter. (q)PCR assays for H. suis, F. gastrosuis and H. pylori-like organisms were performed, as well as 16S rRNA sequencing for pars oesophagea microbiome analyses. All 150 pig stomachs showed lesions. F. gastrosuis was detected in 115 cases (77%) and H. suis in 117 cases (78%), with 92 cases (61%) of co-infection; H. pylori-like organisms were detected in one case. Higher infectious loads of H. suis increased the odds of severe gastric lesions (OR = 1.14, p = 0.038), while the presence of H. suis infection in the pyloric gland zone increased the probability of pars oesophageal erosions [16.4% (95% CI 0.6-32.2%)]. The causal effect of H. suis was mediated by decreased pars oesophageal microbiome diversity [-1.9% (95% CI - 5.0-1.2%)], increased abundances of Veillonella and Campylobacter spp., and decreased abundances of Lactobacillus, Escherichia-Shigella, and Enterobacteriaceae spp. Higher infectious loads of F. gastrosuis in the pars oesophagea decreased the odds of severe gastric lesions (OR = 0.8, p = 0.0014). Feed pelleting had no significant impact on the prevalence of severe gastric lesions (OR = 1.72, p = 0.28). H. suis infections are a risk factor for ulceration of the porcine pars oesophagea, probably mediated through alterations in pars oesophageal microbiome diversity and composition.


Assuntos
Fusobacterium , Infecções por Helicobacter , Helicobacter heilmannii , Microbiota , Úlcera Gástrica , Doenças dos Suínos , Animais , Suínos , Úlcera Gástrica/microbiologia , Úlcera Gástrica/patologia , Úlcera Gástrica/veterinária , RNA Ribossômico 16S , Doenças dos Suínos/microbiologia , Infecções por Helicobacter/veterinária , Infecções por Helicobacter/microbiologia , Mucosa Gástrica
12.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317258

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Streptococcus suis/genética , Monócitos , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Granulócitos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia
13.
Nat Commun ; 15(1): 1104, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321036

RESUMO

Some plant sensor nucleotide-binding leucine-rich repeat (NLR) receptors detect pathogen effectors through their integrated domains (IDs). Rice RGA5 sensor NLR recognizes its corresponding effectors AVR-Pia and AVR1-CO39 from the blast fungus Magnaporthe oryzae through direct binding to its heavy metal-associated (HMA) ID to trigger the RGA4 helper NLR-dependent resistance in rice. Here, we report a mutant of RGA5 named RGA5HMA5 that confers complete resistance in transgenic rice plants to the M. oryzae strains expressing the noncorresponding effector AVR-PikD. RGA5HMA5 carries three engineered interfaces, two of which lie in the HMA ID and the other in the C-terminal Lys-rich stretch tailing the ID. However, RGA5 variants having one or two of the three interfaces, including replacing all the Lys residues with Glu residues in the Lys-rich stretch, failed to activate RGA4-dependent cell death of rice protoplasts. Altogether, this work demonstrates that sensor NLRs require a concerted action of multiple surfaces within and outside the IDs to both recognize effectors and activate helper NLR-mediated resistance, and has implications in structure-guided designing of sensor NLRs.


Assuntos
Magnaporthe , Oryza , Ligação Proteica , Domínios Proteicos , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Oryza/metabolismo , Resistência à Doença , Magnaporthe/metabolismo
14.
Sci Rep ; 14(1): 3011, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321059

RESUMO

Axillary odor is a malodor produced by bacterial metabolism near the apocrine glands, which often causes discomfort in an individual's daily life and social interactions. A deodorant is a personal care product designed to alleviate or mask body odor. Currently, most deodorants contain antimicrobial chemicals and fragrances for odor management; however, direct application to the underarm skin can result in irritation or sensitivity. Therefore, there is a growing interest in technologies that enable disinfection and odor control without the antiperspirants or perfumes. The cold atmospheric plasma temporally generates reactive radicals that can eliminate bacteria and surrounding odors. In this study, cultured Staphylococcus hominis and Corynebacterium xerosis, the causative bacteria of axillary bromhidrosis, were killed after 90% plasma exposure for 3 min. Moreover, the electronic nose system indicated a significant reduction of approximately 51% in 3-hydroxy-3-methylhexanoic acid and approximately 34% in 3-methyl-3-sulfanylhexan-1-ol, the primary components of axillary odor, following a 5-min plasma exposure. These results support the dual function of our deodorant in eliminating bacteria and axillary odors without the chemical agents. Therefore, cold atmospheric plasma-applied deodorant devices have great potential for the treatment and management of axillary odors as a non-contact approach without chemical use in daily life.


Assuntos
Desodorantes , Antibacterianos/farmacologia , Odorantes , Pele , Glândulas Apócrinas , Bactérias , Axila/microbiologia
15.
BMC Genomics ; 25(1): 148, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321370

RESUMO

BACKGROUND: Captivity and artificial food provision are common conservation strategies for the endangered golden snub-nosed monkey (Rhinopithecus roxellana). Anthropogenic activities have been reported to impact the fitness of R. roxellana by altering their gut microbiota, a crucial indicator of animal health. Nevertheless, the degree of divergence in gut microbiota between different anthropogenically-disturbed (AD) R. roxellana and their counterparts in the wild has yet to be elucidated. Here, we conducted a comparative analysis of the gut microbiota across nine populations of R. roxellana spanning China, which included seven captive populations, one wild population, and another wild population subject to artificial food provision. RESULTS: Both captivity and food provision significantly altered the gut microbiota. AD populations exhibited common variations, such as increased Bacteroidetes and decreased Firmicutes (e.g., Ruminococcus), Actinobacteria (e.g., Parvibacter), Verrucomicrobia (e.g., Akkermansia), and Tenericutes. Additionally, a reduced Firmicutes/Bacteroidetes ratiosuggested diminished capacity for complex carbohydrate degradation in captive individuals. The results of microbial functional prediction suggested that AD populations displayed heightened microbial genes linked to vitamin and amino acid metabolism, alongside decreased genes associated antibiotics biosynthesis (e.g., penicillin, cephalosporin, macrolides, and clavulanic acid) and secondary metabolite degradation (e.g., naphthalene and atrazine). These microbial alterations implied potential disparities in the health status between AD and wild individuals. AD populations exhibited varying degrees of microbial changes compared to the wild group, implying that the extent of these variations might serve as a metric for assessing the health status of AD populations. Furthermore, utilizing the individual information of captive individuals, we identified associations between variations in the gut microbiota of R. roxellana and host age, as well as pedigree. Older individuals exhibited higher microbial diversity, while a closer genetic relatedness reflected a more similar gut microbiota. CONCLUSIONS: Our aim was to assess how anthropogenic activities and host factors influence the gut microbiota of R. roxellana. Anthropogenic activities led to consistent changes in gut microbial diversity and function, while host age and genetic relatedness contributed to interindividual variations in the gut microbiota. These findings may contribute to the establishment of health assessment standards and the optimization of breeding conditions for captive R. roxellana populations.


Assuntos
Colobinae , Microbioma Gastrointestinal , Humanos , Animais , Efeitos Antropogênicos , Bactérias/genética , Colobinae/genética , Colobinae/microbiologia , Bacteroidetes , Firmicutes
16.
Vet Res ; 55(1): 17, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321502

RESUMO

Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.


Assuntos
Endocardite , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Suínos , Animais , Tipagem de Sequências Multilocus/veterinária , Tonsila Palatina/microbiologia , Streptococcus suis/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Endocardite/veterinária
17.
PLoS One ; 19(2): e0294730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324560

RESUMO

Fresh-frozen stool banks intended for humans with gastrointestinal and metabolic disorders have been recently established and there are ongoing efforts to establish the first veterinary fresh-frozen stool bank. Fresh frozen stored feces provide an advantage of increased availability and accessibility to high-quality optimal donor fecal material. The stability of frozen canine feces regarding fecal microbiome composition and diversity has not been reported in dogs, providing the basis for this study. We hypothesized that fecal microbial composition and diversity of healthy dogs would remain stable when stored at -20°C and -80°C for up to 12 months compared to baseline samples evaluated before freezing. Stool samples were collected from 20 apparently healthy dogs, manually homogenized, cryopreserved in 20% glycerol and aliquoted, frozen in liquid nitrogen and stored at -20°C or -80°C for 3, 6, 9, and 12 months. At baseline and after period of storage, aliquots were thawed and treated with propidium monoazide before fecal DNA extraction. Following long-read 16S-rRNA amplicon sequencing, bacterial community composition and diversity were compared among treatment groups. We demonstrated that fresh-frozen canine stools collected from 20 apparently healthy dogs could be stored for up to 12 months at -80°C with minimal change in microbial community composition and diversity and that storage at -80°C is superior to storage at -20°C. We also found that differences between dogs had the largest effect on community composition and diversity. Relative abundances of certain bacterial taxa, including those known to be short-chain fatty acid producers, varied significantly with specific storage temperatures and duration. Further work is required to ascertain whether fecal donor material that differs in bacterial community composition and diversity across storage conditions and duration could lead to differences in clinical efficacy for specific clinical indications of fecal microbiota transplantation.


Assuntos
Microbiota , Manejo de Espécimes , Humanos , Cães , Animais , Fezes/microbiologia , Criopreservação/veterinária , Trato Gastrointestinal , Bactérias/genética , RNA Ribossômico 16S/genética
18.
Rev Soc Bras Med Trop ; 57: e008002023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324809

RESUMO

Previously considered saprobe and non-pathogenic, the fungus Papiliotrema laurentii (formerly known as Cryptococcus laurentii), is rarely associated with human infection. Nevertheless, there has been an increase in reported infections by non-neoformans cryptococci. After a literature search on the Cochrane Library, LILACS, SciELO, MEDLINE, PubMed, and PMC (PubMed Central) databases, we conclude that this is the first case report of fungemia and probable meningitis caused by Papiliotrema laurentii in a previously immunocompetent host with associated COVID-19.


Assuntos
Basidiomycota , COVID-19 , Criptococose , Cryptococcus , Fungemia , Humanos , Fungemia/complicações , Fungemia/diagnóstico , Fungemia/microbiologia , Criptococose/microbiologia , COVID-19/complicações , SARS-CoV-2
19.
Sci Rep ; 14(1): 3168, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326388

RESUMO

Altered gut microbiome composition has been reported in children with eczema and interventions that restore beneficial bacteria in the gut may improve eczema. This open-label pilot study aimed to investigate the efficacy of a novel infant microbiome formula (SIM03) in young children with eczema. Pre-school Chinese children aged 1-5 years old with eczema received SIM03 twice daily for three months. The novelty of SIM03 consists of both the use of a patented microencapsulation technology to protect the viability of unique Bifidobacterium bifidum and Bifidobacterium breve strains identified through big data analysis of large metagenomic datasets of young Chinese children. Paired stool samples at baseline and following SIM03 were analyzed by metagenomics sequencing. Generalized estimating equation was used to analyze changes in eczema severity, skin biophysical parameters, quality of life and stool microbiome. Twenty children aged 3.0 ± 1.6 years (10 with severe eczema) were recruited. Treatment compliance was ≥ 98%. SCORing Atopic Dermatitis score decreased significantly at two months (P = 0.008) and three months (P < 0.001), while quality of life improved significantly at 1, 2, and 3 months. The relative abundance of B. breve and microbial pathways on acetate and acetyl-CoA synthesis were enriched in stool samples at one month (P = 0.0014). Children who demonstrated increased B. bifidum after SIM03 showed improvement in sleep loss (P = 0.045). Relative abundance of B. breve correlated inversely with eczema extent (P = 0.023) and intensity (P = 0.019) only among patients with increased B. breve at Month 3. No serious adverse event was observed. In conclusion, SIM03 is well tolerated. This patented microbiome formula improves disease severity and quality of life in young eczematous children by enhancing the delivery of B. bifidum and B. breve in the gut. SIM03 is a potential treatment option for childhood eczema.


Assuntos
Bifidobacterium bifidum , Dermatite Atópica , Eczema , Microbioma Gastrointestinal , Humanos , Lactente , Pré-Escolar , Criança , Qualidade de Vida , Projetos Piloto , Dermatite Atópica/terapia , Dermatite Atópica/microbiologia , Microbioma Gastrointestinal/genética , Eczema/terapia
20.
BMC Infect Dis ; 24(1): 171, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326773

RESUMO

BACKGROUND: Syndromic surveillance of acute gastroenteritis plays a significant role in the diagnosis and management of gastrointestinal infections that are responsible for a substantial number of deaths globally, especially in developing countries. In Lebanon, there is a lack of national surveillance for acute gastroenteritis, and limited data exists regarding the prevalence of pathogens causing diarrhea. The one-year study aims to investigate the epidemiology of common gastrointestinal pathogens and compare our findings with causative agents of diarrhea reported by our study collaborative centers. METHODS: A multicenter, cross-sectional study was conducted over a one-year period. A total of 271 samples were obtained from outpatients and inpatients presenting with symptoms of acute gastroenteritis at various healthcare facilities. The samples were then analyzed using Allplex gastrointestinal assay that identifies a panel of enteric pathogens. RESULTS: Overall, enteropathogens were detected in 71% of the enrolled cases, 46% of those were identified in patients as single and 54% as mixed infections. Bacteria were observed in 48%, parasites in 12% and viruses in 11%. Bacterial infections were the most prevalent in all age groups. Enteroaggregative E. coli (26.5%), Enterotoxigenic E. coli (23.2%) and Enteropathogenic E. coli (20.3%) were the most frequently identified followed by Blastocystis hominis (15.5%) and Rotavirus (7.7%). Highest hospitalization rate occurred with rotavirus (63%), Enterotoxigenic E. coli (50%), Blastocystis hominis (45%) and Enteropathogenic E. coli (43%). Enteric pathogens were prevalent during summer, fall and winter seasons. CONCLUSIONS: The adoption of multiplex real-time PCR assays in the diagnosis of gastrointestinal infections has identified gaps and improved the rates of detection for multiple pathogens. Our findings highlight the importance of conducting comprehensive surveillance to monitor enteric infections. The implementation of a syndromic testing panel can therefore provide healthcare professionals with timely and accurate information for more effective treatment and public health interventions.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Gastroenterite , Rotavirus , Humanos , Reação em Cadeia da Polimerase Multiplex , Estudos Transversais , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Diarreia/diagnóstico , Diarreia/epidemiologia , Diarreia/etiologia , Rotavirus/genética , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...