Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572.551
Filtrar
1.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003037

RESUMO

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Assuntos
Cádmio , Carvão Vegetal , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/microbiologia , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Endófitos/fisiologia , Rizosfera , Solo/química , Biodegradação Ambiental , Microbiota/efeitos dos fármacos
2.
J Environ Sci (China) ; 147: 310-321, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003049

RESUMO

In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.


Assuntos
Betaína , Salinidade , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Betaína/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
3.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003046

RESUMO

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Hidrocarbonetos , Rhodococcus , Rhodococcus/metabolismo , Reatores Biológicos/microbiologia , Hidrocarbonetos/metabolismo , Carbono/metabolismo , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/análise , Espectrometria de Massas , Tolueno/metabolismo , Xilenos/metabolismo , Butanos/metabolismo , Derivados de Benzeno , Pentanos
4.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003058

RESUMO

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Fósforo/metabolismo , Salinidade , Cloreto de Sódio , Bactérias/metabolismo , Microbiota , Análise da Demanda Biológica de Oxigênio
5.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003073

RESUMO

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Assuntos
Água Potável , Resistência Microbiana a Medicamentos , Metagenômica , Resistência Microbiana a Medicamentos/genética , Água Potável/microbiologia , China , Monitoramento Ambiental , Antibacterianos/farmacologia , Microbiologia da Água
6.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003069

RESUMO

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Nitrificação , Nitrogênio/metabolismo , Solo/química , Desnitrificação , Águas Residuárias/química , Esgotos/microbiologia , Microbiologia do Solo , Zeolitas/química , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo
7.
FASEB J ; 38(13): e23763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954404

RESUMO

Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.


Assuntos
Cápsulas Bacterianas , Patos , Infecções por Flavobacteriaceae , Riemerella , Riemerella/genética , Riemerella/patogenicidade , Riemerella/metabolismo , Animais , Patos/microbiologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fatores de Virulência/genética , Deleção de Genes
8.
Artigo em Inglês | MEDLINE | ID: mdl-38954457

RESUMO

Four rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain-positive lactic acid bacteria, designated as EB0058T, SCR0080, LD0937T and SCR0063T, were isolated from different corn and grass silage samples. The isolated strains were characterized using a polyphasic approach and EB0058T and SCR0080 were identified as Lacticaseibacillus zeae by 16S rRNA gene sequence analysis. Based on whole-genome sequence-based characterization, EB0058T and SCR0080 were separated into a distinct clade from Lacticaseibacillus zeae DSM 20178T, together with CECT9104 and UD2202, whose genomic sequences are available from NCBI GenBank. The average nucleotide identity (ANI) values within the new subgroup are 99.9 % and the digital DNA-DNA hybridization (dDDH) values are 99.3-99.9 %, respectively. In contrast, comparison of the new subgroup with publicly available genomic sequences of L. zeae strains, including the type strain DSM 20178T, revealed dDDH values of 70.2-72.5 % and ANI values of 96.2-96.6 %. Based on their chemotaxonomic, phenotypic and phylogenetic characteristics, EB0058T and SCR0080 represent a new subspecies of L. zeae. The name Lacticaseibacillus zeae subsp. silagei subsp. nov. is proposed with the type strain EB0058T (=DSM 116376T=NCIMB 15474T). According to the results of 16S rRNA gene sequencing, LD0937T and SCR0063T are members of the Lacticaseibacillus group. The dDDH value between the isolates LD0937T and SCR0063T was 67.6 %, which is below the species threshold of 70 %, clearly showing that these two isolates belong to different species. For both strains, whole genome-sequencing revealed that the closest relatives within the Lacticaseibacillus group were Lacticaseibacillus huelsenbergensis DSM 115425 (dDDH 66.5 and 65.9 %) and Lacticaseibacillus casei DSM 20011T (dDDH 64.1 and 64.9 %). Based on the genomic, chemotaxonomic and morphological data obtained in this study, two novel species, Lacticaseibacillus parahuelsenbergensis sp. nov. and Lacticaseibacillus styriensis sp. nov. are proposed and the type strains are LD0937T (=DSM 116105T=NCIMB 15471T) and SCR0063T (=DSM 116297T=NCIMB 15473T), respectively.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , Poaceae , RNA Ribossômico 16S , Análise de Sequência de DNA , Silagem , Zea mays , RNA Ribossômico 16S/genética , Zea mays/microbiologia , Silagem/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Poaceae/microbiologia , Composição de Bases , Sequenciamento Completo do Genoma , Lacticaseibacillus
9.
J R Soc Interface ; 21(216): 20240278, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955228

RESUMO

The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics over 100 years for 100 times in a model gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, haemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These results may help disease management and surveillance strategies support wildlife conservation.


Assuntos
Modelos Biológicos , Dinâmica Populacional , Animais , Tailândia/epidemiologia , Bovinos , Animais Selvagens , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/veterinária , Doenças Transmissíveis/transmissão , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Ruminantes/microbiologia
10.
Zhonghua Er Ke Za Zhi ; 62(7): 643-648, 2024 Jul 02.
Artigo em Chinês | MEDLINE | ID: mdl-38955682

RESUMO

Objective: To investigate the association between intestinal colonization of segmented filamentous bacteria (SFB) and the risk of rotavirus infection, and the possible mechanisms by which SFB resist rotavirus infection. Methods: This case-control study enrolled 50 children aged 0 to 5 years who present to the outpatient Department of Children's Hospital, Zhejiang University School of Medicine with diarrhea and positive stool tests for rotavirus. The children were divided into rotavirus enteritis group and control group consisting of 55 children with non-gastrointestinal and non-infectious surgical diseases.The age and sex composition of the two groups was matched. The DNA of the fecal flora was extracted and SFB was detected by real-time fluorescence quantitative PCR analysis. The children in the rotavirus enteritis group and the control group were subgrouped by age and sex to analyze the differences in SFB positivity rates between different groups, and further compare and analyze the differences in SFB positivity rates between these two groups of children in the ≤2 years old subgroup and the >2-5 years old subgroup. Neutralization test was performed with p3340 protein and rotavirus to determine the relationship between rotavirus infection rate and p3340 concentration in Vero cells. χ2 test or Fisher's exact probability method was used for comparison between the two groups. Results: There were 50 children in the rotavirus enteritis group with an age of (1.7±0.9) years, and 55 children in the control group with an age of (1.8±1.1) years. The positive rate of SFB in children with rotavirus enteritis showed a declining trend across ages groups, with the highest rate of 10/14 in the ≤1 year old group, followed by 67% (14/21) in the >1-2 years old group, 9/15 in the >2-5 years old group, and there was no statistically significant difference (P=0.867). The positive rate of SFB in the control group was 12/15 in the ≤1 year old group, 95% (19/20) in the >1-2 years old group, 50% (10/20) in the >2-5 years old group, with statistical significance (P=0.004). The positive rate of SFB in children with rotavirus enteritis was 74% (20/27) in males and 56% (13/23) in females (χ2=1.71, P=0.192). In the control group, it was 79% (22/28) in males and 70% (19/27) in females (χ2=0.49, P=0.485). The positive rate of SFB was 66% (33/50) in the rotavirus enteritis group and 75% (41/55) in the control group, with no statistically significant (χ2=0.56, P=0.454). In the children ≤2 years old, the SFB positivity rate was 69% (24/35) in the rotavirus enteritis group and 89% (31/35) in the control group, with a statistically significant difference (χ2=4.16, P=0.041). However, in the children >2-5 years old, no statistically significant difference was observed, with the positive rate of SFB being 9/15 in the rotavirus enteritis group and 50% (10/20) in the control group (P=0.734). Pearson correlation analysis revealed a negative correlation between rotavirus infection and SFB positivity (r=-0.87,P<0.001). As the concentration of the p3340 specific protein increased, the luminescence intensity of the luciferase in the Vero cells, which were suitable for cultivating rotavirus, exhibited a decreasing trend (F=4.17, P=0.001). Conclusions: SFB colonization in infants less than 2 years old is associated with a reduced risk of rotavirus infection. Cloning of specific SFB functional protein p3340 neutralizes rotavirus infection of Vero cells, and this mechanism of targeting rotavirus infection differs from the common antiviral mechanism.


Assuntos
Fezes , Infecções por Rotavirus , Rotavirus , Humanos , Lactente , Masculino , Feminino , Estudos de Casos e Controles , Pré-Escolar , Fezes/virologia , Fezes/microbiologia , Diarreia/virologia , Diarreia/microbiologia , Enterite/virologia , Enterite/microbiologia , Recém-Nascido , Intestinos/virologia , Intestinos/microbiologia , Animais
12.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 756-762, 2024 Jun 06.
Artigo em Chinês | MEDLINE | ID: mdl-38955721

RESUMO

Allergic diseases are affected by both genetic background and environmental factors.In recent years, many studies have shown that allergic diseases are closely related to the gut microbiome.This article will elaborate on the composition of gut microbiome in early life and its relationship with allergies, the mechanism of action, and the influence of gut microbiome colonization on the atopic march, in order to improve the understanding of the relationship between allergy prevention or treatment and gut microbiome in children, and provide new ideas for the early prevention of allergic diseases and the early intervention of allergic processes.


Assuntos
Hipersensibilidade , Humanos , Hipersensibilidade/microbiologia , Microbiota , Criança , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 891-897, 2024 Jun 06.
Artigo em Chinês | MEDLINE | ID: mdl-38955738

RESUMO

To study the carriage status of drug susceptibility, clonal complex groups, serotypes, surface proteins and virulence genes of Streptococcus agalactiae from respiratory specimen sources. A total of 35 strains of S.agalactiae meeting the criteria were collected from 3 hospitals in 2 locations, Tangshan and Jinan. The age span of the patients was 3 days-92 years, and the percentage of elderly patients≥60 years was 71.5%.The susceptibility to 9 antimicrobial drugs was measured and analyzed using the micro broth dilution method. The strains were 100.0% sensitive to penicillin, linezolid, vancomycin, and ceftriaxone; However, it exhibits high resistance rates to erythromycin, clindamycin and levofloxacin, at 97.1%, 85.7% and 82.9% respectively; and the resistance rates to tetracycline and chloramphenicol were 34.3% and 14.2%, respectively. Genome sequence determination and analysis showed that 16 resistance genes were detected in 35 strains, among which: macrolide and lincosamide resistance genes were mainly ermB, with a carrying rate of 74.2%; tetracycline resistance genes were mainly tetM, with a carrying rate of 25.7%; in addition, the mutation rates of the quinolone resistance determinants gyrA and parC were 88.5% and 85.7%, respectively. 35 strains belonged to 6 ST types and 4 clonal groups, with CC10/ST10 as the main one, accounting for 62.8%; they contained 4 serotypes of Ⅰb, Ⅱ, Ⅲ, and Ⅴ, as well as 1 untyped strain, with serotype Ⅰb as the main one, accounting for 65.7%. The strains carried three pilus types, PI1+PI2a, PI2a and PI2b types, respectively, and detected five surface proteins, alpha, alp1, rib, srr, and rdf_0594, and seven virulence factors, cba, cfb, cylE, fbsA, hylB, lmb, and pavA. Overall, S.agalactiae isolated from respiratory tract specimens is predominantly sourced from elderly patients, with CC10 strains being most prevalent. These strains harbor multiple drug-resistant and virulence genes, demonstrating elevated resistance rates to macrolides, lincosamides, and quinolones. This emphasizes the necessity for vigilant attention to the health threat posed by S. agalactiae from respiratory tract speciments of elderly patients.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/efeitos dos fármacos , Humanos , Idoso , Antibacterianos/farmacologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Adulto , Criança , Adolescente , Pré-Escolar , Lactente , Adulto Jovem , Recém-Nascido , Farmacorresistência Bacteriana/genética , Infecções Estreptocócicas/microbiologia
14.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 905-909, 2024 Jun 06.
Artigo em Chinês | MEDLINE | ID: mdl-38955740

RESUMO

To investigate the status and epidemiological characteristics of respiratory pathogens infections in children with influenza-like illnesses (ILI) in Beijing Children's Hospital from 2022 to 2023. A dual amplification technique was used to detect nucleic acids of seven common respiratory pathogens, including influenza A virus (Flu A), influenza B virus (Flu B), mycoplasma pneumoniae (MP), respiratory syncytial virus (RSV), parainfluenza virus (PIV), adenovirus (ADV), and Chlamydia pneumoniae (CP), in outpatient and inpatient children (aged 0-18 years) with influenza-like symptoms who sought medical care at Beijing Children's Hospital, from January 2022 to March 2023. A total of 43 663 children were included in the study, of which 27 903 tested positive for respiratory pathogens with a total detection rate of 63.91%. Flu A had the highest detection rate of 69.93% (27 332/39 084), followed by MP about 13.22% (380/2 875). The total detection rate of RSV, PIV and ADV was 7.69% (131/1 704). Flu B had a detection rate of 0.16% (64/39 084). No CP was detected in this study. A total of 7 cases of dual infections were detected, with a detection rate of 0.41% (7/1 704). The Chi-square test was used to analyze the differences in detection rates of pathogens among different genders, age groups, and different seasons. Among the seven pathogens, only Flu A had statistically significant differences in gender (χ2=16.712, P<0.001). The detection rates of Flu A and MP showed an increasing trend with age (both P trend<0.001), while the detection rates of RSV and PIV showed a decreasing trend with age (both P trend<0.001). Flu A had its epidemic peak in winter and spring, with detection rates of 61.30% (3 907/6 374) and 77.47% (23 207/29 958) respectively; MP and PIV had higher detection rates in autumn (25.14% and 7.64% respectively); RSV showed a relatively higher detection rate in winter (8.69%); Flu B and ADV had lower detection rates throughout the study period (0.16% and 1.17% respectively). In conclusion, children with ILI in 2022-2023 were mainly infected with a single respiratory pathogen, and occasionally dual pathogen infections were observed. Among them, the detection rate of Flu A was the highest, and only Flu A showed a gender difference in detection rate. As the age of the children patients increased, the detection rate of Flu A and MP showed an increasing trend, while RSV and PIV showed a decreasing trend. The prevalence of Flu A, Flu B, MP, PIV, and RSV were seasonal.


Assuntos
Influenza Humana , Infecções Respiratórias , Humanos , Criança , Pré-Escolar , Lactente , Adolescente , Influenza Humana/epidemiologia , Masculino , Feminino , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/microbiologia , Pequim/epidemiologia , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Mycoplasma pneumoniae/isolamento & purificação , Recém-Nascido , Vírus Sinciciais Respiratórios/isolamento & purificação , Hospitais Pediátricos , Chlamydophila pneumoniae/isolamento & purificação , Infecções por Vírus Respiratório Sincicial/epidemiologia , China/epidemiologia , Adenoviridae/isolamento & purificação
15.
16.
Rural Remote Health ; 24(2): 8391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957085

RESUMO

INTRODUCTION: An outbreak of gastroenteritis due to Salmonella Give, a very rarely identified serotype in human isolates in Greece, occurred in participants of a religious festival in a rural area of southern Greece, in September 2022. The objectives of this study were to describe the outbreak in terms of epidemiology, identify the vehicle of transmission of the foodborne pathogen and recommend prevention measures. METHODS: The outbreak was linked to the consumption of a local traditional recipe of roasted pork meat served by a street food vendor. In 2018, the same food item, served in a restaurant in the same region, was implicated in another S. Give outbreak. RESULTS: Outbreak investigations revealed that outbreak-associated isolates, of food and human origin, belonged to the same S. Give strain. Significant deficiencies regarding food safety practices were identified. CONCLUSION: Technical knowledge about pathogen transmission paths is important in order for both food handlers and consumers to follow hygiene and sanitary measures, mainly in cases of mass gatherings, where large quantities of food are prepared, handled, cooked and served. Efficient official supervision, mainly during summer festivals, is required in order to avoid recurrence of foodborne infections by different combinations of pathogens/food commodities.


Assuntos
Surtos de Doenças , Carne de Porco , Humanos , Grécia/epidemiologia , Surtos de Doenças/prevenção & controle , Carne de Porco/microbiologia , Masculino , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/prevenção & controle , Intoxicação Alimentar por Salmonella/microbiologia , Feminino , Adulto , Animais , Salmonella/isolamento & purificação , Pessoa de Meia-Idade , Gastroenterite/microbiologia , Gastroenterite/epidemiologia , Suínos , Microbiologia de Alimentos
17.
J Agric Food Chem ; 72(26): 14581-14591, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957087

RESUMO

Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.


Assuntos
Arabidopsis , Resistência à Doença , Doenças das Plantas , Pseudomonas syringae , Rizosfera , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Microbiota , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiologia do Solo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adaptação Fisiológica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
J Agric Food Chem ; 72(26): 14557-14569, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957088

RESUMO

This study aimed to investigate the mechanisms by which dark septate endophytes (DSE) regulate salt tolerance and the accumulation of bioactive constituents in licorice. First, the salt stress tolerance and resynthesis with the plant effect of isolated DSE from wild licorice were tested. Second, the performance of licorice inoculated with DSE, which had the best salt-tolerant and growth-promoting effects, was examined under salt stress. All isolated DSE showed salt tolerance and promoted plant growth, withCurvularia lunata D43 being the most effective. Under salt stress, C. lunata D43 could promote growth, increase antioxidant enzyme activities, enhance glycyrrhizic acid accumulation, improve key enzyme activities in the glycyrrhizic acid synthesis pathway, and induce the expression of the key enzyme gene and salt tolerance gene of licorice. The structural equation model demonstrated that DSE alleviate the negative effects of salt stress through direct and indirect pathways. Variations in key enzyme activities, gene expression, and bioactive constituent concentration can be attributed to the effects of DSE. These results contribute to revealing the value of DSE for cultivating medicinal plants in saline soils.


Assuntos
Endófitos , Glycyrrhiza , Ácido Glicirrízico , Estresse Salino , Ácido Glicirrízico/metabolismo , Glycyrrhiza/química , Glycyrrhiza/metabolismo , Glycyrrhiza/microbiologia , Endófitos/metabolismo , Endófitos/genética , Tolerância ao Sal , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
19.
J Food Sci ; 89(7): 3973-3994, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957107

RESUMO

Mushrooms have garnered significant attention for their nutritional composition and potential health benefits, including antioxidant, antihypertensive, and cholesterol-lowering properties. This review explores the nutritional composition of edible mushrooms, including their high protein content, essential amino acids, low fat, cholesterol levels, and bioactive compounds with medicinal value. Moreover, the study analyzes the microbiology of mushroom fermentation, focusing on the diverse microbial ecosystem involved in the transformation of raw mushrooms and the preservation methods employed to extend their shelf life. Special emphasis is placed on lactic acid fermentation as a cost-effective and efficient preservation technique. It involves controlling the growth of lactic acid bacteria to enhance the microbial stability and nutritional quality of mushrooms. Furthermore, the bioactivities of fermented mushrooms are elucidated, which are antioxidant, antimicrobial, anticancer, anti-glycemic, immune modulatory, and other biological activities. The mechanisms underlying these bioactivities are explored, emphasizing the role of fermented mushrooms in suppressing free radicals, enhancing antioxidant defenses, and modulating immune responses. Overall, this review provides comprehensive insights into the nutritional composition, microbiology, bioactivities, and underlying mechanisms of fermented mushrooms, highlighting their potential as functional foods with significant health-promoting properties.


Assuntos
Agaricales , Antioxidantes , Fermentação , Valor Nutritivo , Agaricales/química , Humanos , Antioxidantes/análise , Antioxidantes/farmacologia , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Alimento Funcional
20.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958241

RESUMO

Objectives. Anti-fungal agents are increasingly becoming less effective due to the development of resistance. In addition, it is difficult to treat Candida organisms that form biofilms due to a lack of ability of drugs to penetrate the biofilms. We are attempting to assess the effect of a new therapeutic agent, N-acetylcysteine (NAC), on adhesion and biofilm formation in Candida parapsilosis clinical strains. Meanwhile, to detect the transcription level changes of adhesion and biofilm formation-associated genes (CpALS6, CpALS7, CpEFG1 and CpBCR1) when administrated with NAC in C. parapsilosis strains, furthermore, to explore the mechanism of drug interference on biofilms.Hypothesis/Gap statement. N-acetylcysteine (NAC) exhibits certain inhibitory effects on adhesion and biofilm formation in C. parapsilosis clinical strains from CRBSIs through: (1) down-regulating the expression of the CpEFG1 gene, making it a highly potential candidate for the treatment of C. parapsilosis catheter-related bloodstream infections (CRBSIs), (2) regulating the metabolism and biofilm -forming factors of cell structure.Methods. To determine whether non-antifungal agents can exhibit inhibitory effects on adhesion, amounts of total biofilm formation and metabolic activities of C. parapsilosis isolates from candidemia patients, NAC was added to the yeast suspensions at different concentrations, respectively. Reverse transcription was used to detect the transcriptional levels of adhesion-related genes (CpALS6 and CpALS7) and biofilm formation-related factors (CpEFG1 and CpBCR1) in the BCR1 knockout strain, CP7 and CP5 clinical strains in the presence of NAC. To further explore the mechanism of NAC on the biofilms of C. parapsilosis, RNA sequencing was used to calculate gene expression, comparing the differences among samples. Gene Ontology (GO) enrichment analysis helps to illustrate the difference between two particular samples on functional levels.Results. A high concentration of NAC reduces the total amount of biofilm formation in C. parapsilosis. Following co-incubation with NAC, the expression of CpEFG1 in both CP7 and CP5 clinical strains decreased, while there were no significant changes in the transcriptional levels of CpBCR1 compared with the untreated strain. GO enrichment analysis showed that the metabolism and biofilm-forming factors of cell structure were all regulated after NAC intervention.Conclusions. The non-antifungal agent NAC exhibits certain inhibitory effects on clinical isolate biofilm formation by down-regulating the expression of the CpEFG1 gene, making it a highly potential candidate for the treatment of C. parapsilosis catheter-related bloodstream infections.


Assuntos
Acetilcisteína , Biofilmes , Candida parapsilosis , Candidemia , Infecções Relacionadas a Cateter , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Acetilcisteína/farmacologia , Humanos , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Candida parapsilosis/fisiologia , Infecções Relacionadas a Cateter/microbiologia , Candidemia/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA