Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203.431
Filtrar
1.
Talanta ; 237: 122972, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736695

RESUMO

Sulfur dioxide (SO2) plays an extremely important role in the basic processes of physiology and pathology. As an antioxidant, SO2 can maintain the redox homeostasis in the cell. Excessive inhalation of SO2 would lead to irreparable respiratory damage, resulting in respiratory diseases, neurological disorders, and even cardiovascular disease. Thus, it is urgent to exploit an excellent way to monitor SO2 derivatives in biological system. Herein, we design a water-soluble ratiometric fluorescent probe to fast detect the level of SO2 derivatives in living cells in vivo. The probe displays obvious fluorescence signal at long wavelength, which is helpful for imaging of biological system. After respond to SO2 derivatives, the fluorescence signal at 465 nm increases rapidly due to the Michael addition reaction is triggered, further causing the disruption of large conjugated system. The probe exhibits high selectivity and fast respond to SO2 derivatives, which can be able to sensitive and real-time monitoring of SO2 derivatives level in living cells. Moreover, the probe reveals a low detection limit and a great linear relationship to SO2 derivatives. Based on the negligible cytotoxicity and good biocompatibility of the probe, which is employed to detect exogenous and endogenous SO2 derivatives in living cells. In addition, it is also served as a potential chemical tool to detect SO2 derivatives in mice model of sinusitis.


Assuntos
Corantes Fluorescentes , Sinusite , Animais , Fluorescência , Células HeLa , Humanos , Camundongos , Dióxido de Enxofre/toxicidade , Água
2.
Environ Pollut ; 292(Pt A): 118272, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718086

RESUMO

Silicosis is a disease mainly caused by pulmonary interstitial fibrosis caused by long-term inhalation of dust with excessively high content of free SiO2. Transdifferentiation of lung fibroblasts into myofibroblasts is an important cellular basis for silicosis, but the key transcription factors (TFs) involved in this process are still unclear. In order to explore the biological regulation of transcription factor PPARγ/LXRα in silica-induced pulmonary fibrosis, this study explored the molecular mechanism of PPARγ/LXRα involved in regulating transcription factors related to SiO2-induced lung injury at the cellular level and in animal models. ChIP-qPCR detected that PPARγ directly regulated the transcriptional activity of the LXRα gene promoter, while the PPARγ agonist RSG increased the expression of LXRα. In addition, we demonstrated in the cell model that upregulation of LXRα can inhibit silica-mediated fibroblast transdifferentiation, accompanied by an increase in the expression of SREBF1, PLTP and ABCA1. The results of LXRα silencing experiment matched those of overexpression experiment. These studies explored the role of LXRα in plasticity and phenotypic transformation between lung fibroblasts and myofibroblasts. Therefore, inhibiting or reversing the transdifferentiation of lung fibroblasts to myofibroblasts by intervening PPARγ/LXRα may provide a new therapeutic target for the treatment of silicosis.


Assuntos
Dióxido de Silício , Silicose , Adaptação Fisiológica , Animais , Fibroblastos , Pulmão , PPAR gama/genética , Dióxido de Silício/toxicidade
3.
Environ Pollut ; 292(Pt A): 118212, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582921

RESUMO

Varroa mite is one of the major adverse factors causing honey bee population decline. In this study, Varroa destructor-infested and uninfested honey bee colonies were established by selective applying miticide (Apivar® amitraz). Mite population was monitored monthly (April-October 2016), and deformed wing virus (DWV) loading was detected seasonally (April, July, and October). Four immunity- and two physiology-related gene expressions, natural mortality, and susceptibility to five insecticides were comparatively and seasonally examined in field-collected honey bee workers. Results showed that Apivar-treated bee colonies had minor or undetectable mite and DWV (using RT-qPCR) infestations in whole bee season, while untreated colonies had substantially higher mite and DWV infestations. In untreated colonies, Varroa mite population irregularly fluctuated over the bee season with higher mite counts in Jun (318 ± 89 mites dropped in 48 h) or August (302) than that (25 ± 4 or 34) in October, and mite population density was not dynamically or closely correlated with the seasonal shift of honey bee natural mortality (regression slope = -0.5212). Unlike mite, DWV titer in untreated colonies progressively increased over the bee season, and it was highly correlated (R2 = 1) with the seasonal increase of honey bee natural mortality. Significantly lower gene expressions of dor, PPO, mfe, potentially PPOa and eat as well, in untreated colonies also indicated an association of increased DWV infestation with decreased physiological and immunity-related functions in late-season honey bees. Furthermore, bees with lower mite/DWV infestations exhibited generally consistently lower susceptibilities (contact and oral toxicities) to five representative insecticides than the bees without Apivar treatment. All of these data from this study consistently indicated an interaction of Varroa/viral infestations with insecticide susceptibilities in honey bees, potentially through impairing bee's physiology and immunity, emphasizing the importance of mite control in order to minimize honey bee decline.


Assuntos
Acaricidas , Inseticidas , Vírus de RNA , Varroidae , Acaricidas/toxicidade , Animais , Abelhas , Inseticidas/toxicidade
4.
Environ Pollut ; 292(Pt A): 118242, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600067

RESUMO

Multigenerational tests provide a comprehensive assessment of the long-term toxicity of pollutants. Here, the multigenerational effects of soil metal contamination on Folsomia candida were investigated over five generations (generations 1-5: F1-F5). Nine soils with varying physicochemical properties and degrees of metal pollution were studied. The selected endpoints were survival, reproduction, body size and body metal concentrations. F. candida was cultured only up to the fifth generation with high reproduction in contaminated acid soils where reproduction was at least 5 times that in neutral soils and 20 times that in calcareous soils. Correlation analysis indicated that soil pH (68.9% contribution) and cation exchange capacity (CEC, 15.4% contribution) were more important factors than pollution level affecting the reproduction of F. candida. No significant difference was observed in adult survival or adult length over five generations. The highest collembolan body Cd concentrations in soils A1-A3 were 3.15, 2.93 and 3.23 times those in F1, with similar results for body Pb. A similar trend in reproduction and juvenile length was observed with an initial decrease (p < 0.05) and then an increase (p < 0.05) over the generations in each acid soil; the opposite trend occurred in the changes in body cadmium (Cd) and lead (Pb) concentrations which increased initially (p < 0.05) and then decreased (p < 0.05) compared to the original concentrations of the first generation. The results indicate that F. candida can adapt to soil metal stress during multigenerational exposure and the adaption energy may be related to a tradeoff between reproduction or growth of juveniles and the detoxification of metals accumulated in the body. Soil properties, especially pH and CEC, had a substantial influence on the long-term survival of the collembolan in the metal-polluted soils.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Poluição Ambiental , Metais/toxicidade , Solo , Poluentes do Solo/toxicidade
5.
Environ Pollut ; 292(Pt A): 118264, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606968

RESUMO

Preterm birth is the second most common cause of death in children under 5 years of age. The etiology of preterm birth has not yet been elucidated. Although maternal exposure to endocrine disrupting chemicals (EDCs) may increase the risk for preterm birth, associations have not been confirmed. We performed a meta-analysis to elucidate the relationships between maternal exposure to EDCs and preterm birth. A systematic search of PubMed, Ovid-EMBASE, and the Cochrane Library (CENTRAL) for relevant published studies providing quantitative data on the association between maternal EDC exposure and preterm birth in humans was conducted in July 2021. To calculate the overall estimates, we pooled the adjusted regression coefficients with 95% confidence intervals (CIs) from each study by the inverse variance method. A total of 59 studies were included. The pooled results indicated that maternal exposure to metals (OR, 1.23; 95% CI, 1.17 to 1.29) and phthalates (OR, 1.31; 95% CI, 1.21 to 1.42) was related to an increased risk for preterm birth. Specifically, maternal exposure to lead, cadmium, chromium, copper and manganese appeared to be correlated with an elevated risk for preterm birth. Additionally, maternal exposure to monoethyl phthalate (MEP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), monobenzyl phthalate (MBzP), and di (2-ethylhexyl) phthalate (DEHP) was also associated with preterm birth. In conclusion, maternal exposure to metals and phthalates may increase the risk for preterm birth based on current evidence.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Ácidos Ftálicos , Nascimento Prematuro , Criança , Pré-Escolar , Exposição Ambiental , Feminino , Humanos , Recém-Nascido , Exposição Materna , Ácidos Ftálicos/toxicidade , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , Análise de Regressão
6.
Environ Pollut ; 292(Pt A): 118308, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626705

RESUMO

Aggravating the pollution of microcystins (MCs) in freshwater environments is detrimental to aquatic living organisms and humans, and thus threatens the stability of ecosystems. Some environmental factors have been verified to promote the production of MCs in Microcystis aeruginosa, thereby aggravating the pollution of MCs. However, the effects of cerium (Ce), the most abundant rare earth element in global water environments, on the production of MCs in M. aeruginosa are unknown. Here, Lake Taihu water was selected as a representative of freshwater environments. By using interdisciplinary methods, it was found that: (1) the exposure level of Ce [Ce(III) and Ce(IV)] in Lake Taihu water is in the range of 0.271-0.282 µg/L; (2) Ce exposure in Lake Taihu water promoted the contents of three main MCs (MC-LR, MC-LW and MC-YR) in M. aeruginosa and water; (3) a cellular mechanism of Ce promoting the production of MCs in M. aeruginosa in Lake Taihu water was suggested: Ce enhanced endocytosis in cells of M. aeruginosa to promote the essential element uptake by M. aeruginosa for MC synthesis. Thus, Ce exposure in Lake Taihu water aggravates the pollution of MCs via enhancing endocytosis in cells of M. aeruginosa. The results provide reference for assessing the environmental risk of Ce in water environments, investigating the mechanism of the pollution of MCs induced by environmental factors, and developing strategies aimed at preventing and controlling the pollution of MCs.


Assuntos
Cério , Microcystis , Cério/toxicidade , China , Ecossistema , Endocitose , Humanos , Lagos , Microcistinas , Água
7.
Environ Pollut ; 292(Pt A): 118307, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626713

RESUMO

Municipal sewage treatment plants (STPs) have been regarded as an important source of organic contaminants in aquatic environment. To assess the impact of STPs on occurrence and toxicity of STP-associated contaminants in receiving waterways, a novel passive sampler modified from polar organic chemical integrative sampler (m-POCIS) was deployed at the inlet and outlet of a STP and several upstream and downstream sites along a river receiving STP effluent in Guangzhou, China. Eighty-seven contaminants were analyzed in m-POCIS extracts, along with toxicity evaluation using zebrafish embryos. Polycyclic musks were the predominant contaminants in both STP and urban waterways, and antibiotics and current-use pesticides (e.g., neonicotinoids, fiproles) were also ubiquitous. The m-POCIS extracts from downstream sites caused significant deformity in embryos, yet the toxicity could not be explained by the measured contaminants, implying the presence of nontarget stressors. Sewage treatment process substantially reduced embryo deformity, chemical oxygen demand, and contamination levels of some contaminants; however, concentrations of neonicotinoids and fiproles increased after STP treatment, possibly due to the release of chemicals from perturbed sludge. Source identification showed that most of the contaminants found in urban waterways were originated from nonpoint runoff, while cosmetics factories and hospitals were likely point sources for musks and antibiotics, respectively. Although the observed embryo toxicity could not be well explained by target contaminants, the present study showed a promising future of using passive samplers to evaluate chemical occurrence and aquatic toxicity concurrently. Zebrafish embryo toxicity significantly decreased after sewage treatment, but higher toxicity was observed for downstream samples, demonstrating that urban runoff may produce detrimental effects to aquatic life, particularly in rainy season. These results highlight the relevance of monitoring nonpoint source pollution along with boosting municipal sewage treatment infrastructure.


Assuntos
Esgotos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Compostos Orgânicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
8.
Environ Pollut ; 292(Pt A): 118305, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626715

RESUMO

Due to the large-scale outbreak of Corona Virus Disease (2019), amounts of disinfecting agents was regularly used in public environments and their potential toxicity towards organisms needed to be appreciated. Thus, one mostly used cationic disinfectant, benzalkonium chlorides (BAC(C12)), was selected to assess its potential toxicity one common cyanobacteria Microcystis aeruginosa (M. aeruginosa) in this study. The aims were to explore the toxic effect and mechanism of BAC (C12) on M. aeruginosa growth within 96 h via morphological, physiological, and the relative and absolute quantification (iTRAQ)-based quantitative proteomics variations. The results found that BAC(C12) significantly inhibited cell density of M. aeruginosa at concentrations from 1 mg/L to 10 mg/L, and the 96-h EC50 value was identified to be 3.61 mg/L. Under EC50 concentration, BAC(C12) depressed the photosynthesis activities of M. aeruginosa exhibited by 36% decline of the maximum quantum yield for primary photochemistry (Fv/Fm) value and denaturation of photosynthetic organelle, caused oxidative stress response displayed by the increase of three indexes including superoxide dismutase (SOD), malondialdehyde (MDA), and the intracellular reactive oxygen species (ROS), and destroyed the integrity of cell membranes demonstrated by TEM images and the increase of ex-cellular substances. Then, the iTRAQ-based proteomic analysis demonstrated that BAC(C12) depressed photosynthesis activities through inhibiting the expressions of photosynthetic protein and photosynthetic electron transport related proteins. The suppression of electron transport also led to the increase of superoxide radicals and then posed oxidative stress on cell. Meantime, the 63.63% ascent of extracellular microcystin production of M. aeruginosa was observed, attributing to the high expression of microcystin synthesis proteins and the damage of cell membrane. In sum, BAC(C12) exposure inhibited the growth of M. aeruginosa mainly by depressing photosynthesis, inducing oxidative stress, and breaking the cell membrane. And, it enhanced the release of microcystin from the cyanobacterial cells via up-regulating the microcystin synthesis proteins and inducing the membrane damage, which could enlarge its toxicity to aquatic species.


Assuntos
Microcystis , Compostos de Benzalcônio , Cloretos , Microcistinas/metabolismo , Microcistinas/toxicidade , Microcystis/metabolismo , Fotossíntese , Proteômica
9.
Environ Pollut ; 292(Pt A): 118296, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627961

RESUMO

Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Cobre/toxicidade , Íons , Nanopartículas Metálicas/toxicidade , Metais
10.
Environ Pollut ; 292(Pt A): 118271, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627963

RESUMO

Despite the economic benefits of the oil and gas industry in Northern Alberta, significant concerns exist regarding the impacts of increased oil production on the environment and human health. Several studies have highlighted increases in the concentrations of polycyclic aromatic compounds (PACs) and other hydrocarbons in the atmosphere, water, soil and sediments, plants, wildlife and fish in the Athabasca Oil Sands Region (AOSR) as a result of oil sands industrial activity. Sediment cores can provide information on the temporal trends of contaminants to the environment and provide important baseline information when monitoring data are absent. Here we combined analytical chemistry and a mammalian cell-based bioassay in dated lake sediment cores to assess paleotoxicity in freshwater systems in the AOSR. Sediment intervals were radiometrically dated and subsequently analysed for PACs. PAC extracts from select dated intervals were used in cell-based bioassays to evaluate their endocrine disrupting properties. We demonstrated spatial and temporal variability in the PAC composition of sediment cores around the AOSR with some of the highest concentrations of PACs detected near oil sands industrial activity north of Fort McMurray (AB) in La Saline Natural Area. Recent sediment had positive enrichment factors across most PAC analytes at this site with heavier pyrogenic compounds such as benz(a)anthracene/chrysene and benzofluoranthene/benzopyrene dominating. Our study is the first to link chemical analysis of sediment cores with biological effect assessments of endocrine activity showing feasibility of extending the usefulness of sediment cores in monitoring programs interested in complex mixture assessments. While we observed no spatial or temporal differences in ERα mediated signaling, AhR CALUX results mirrored those of the chemical analysis, demonstrating the utility of coupling biological effects assessments to historical reconstructions of contaminant inputs to the natural environment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alberta , Animais , Monitoramento Ambiental , Humanos , Hidrocarbonetos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Environ Pollut ; 292(Pt A): 118320, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634399

RESUMO

Particulate matter with a diameter of less than 2.5 µm or PM2.5 is recognized worldwide as a cause of public health problems, mainly associated with respiratory and cardiovascular diseases. There is accumulating evidence to show that exposure to PM2.5 has a crucial causative role in various neurological disorders, the main ones being dementia and Alzheimer's disease (AD). PM2.5 can activate glial and microglial activity, resulting in neuroinflammation, increased intracellular ROS production, and ultimately neuronal apoptosis. PM2.5 also causes the alteration of neuronal morphology and synaptic changes and increases AD biomarkers, including amyloid-beta and hyperphosphorylated-tau, as well as raising the levels of enzymes involved in the amyloidogenic pathway. Clinical trials have highlighted the correlation between exposure to PM2.5, dementia, and AD diagnosis. This correlation is also displayed by concordant evidence from animal models, as indicated by increased AD biomarkers in cerebrospinal fluid and markers of vascular injury. Blood-brain barrier disruption is another aggravated phenomenon demonstrated in people at risk who are exposed to PM2.5. This review summarizes and discusses studies from in vitro, in vivo, and clinical studies on causative relationships of PM2.5 exposure to AD-related neuropathology. Conflicting data are also examined in order to determine the actual association between ambient air pollution and neurodegenerative diseases.


Assuntos
Poluição do Ar , Doença de Alzheimer , Poluição do Ar/efeitos adversos , Peptídeos beta-Amiloides , Animais , Cognição , Humanos , Material Particulado/toxicidade
12.
Environ Pollut ; 292(Pt A): 118317, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634407

RESUMO

Neonicotinoids have been often detected in aquatic environment with high concentrations; however, little is known about their risk and fate to/in fish. This study systematically investigated the bio-uptake, tissue distribution and metabolism of neonicotinoids in zebrafish, taking clothianidin (CLO) as an example. The results revealed the uptake and elimination kinetics of CLO in whole fish and different tissues was very similar, and its bioconcentration factor (<1) indicates the low bioaccumulation potential in zebrafish. The highest accumulative tissues for CLO were found to be intestine and liver. Eight biotransformation products were identified in intestine and liver, and the metabolic pathways were found to be N-demethylation and nitro-reduction. The metabolic kinetics of two products (desmethyl clothianidin and clothianidin urea) revealed the metabolism of CLO mainly occurred in liver and intestine. This suggested that the hepatobiliary system played an important role in the metabolism and elimination of CLO. This study provides a comprehensive evaluation of the toxicokinetics of CLO in zebrafish, and these results can contribute to its ecological risk assessment.


Assuntos
Inseticidas , Animais , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazóis , Distribuição Tecidual , Peixe-Zebra
13.
Environ Pollut ; 292(Pt A): 118332, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637826

RESUMO

With the continued increase of global ammonia emission, the damage to human or animal caused by ammonia pollution has attracted wide attention. The noncoding RNAs have been reported to regulate a variety of biological processes under different environmental stimulation via ceRNA (competing endogenous RNA) networks. Autophagy is a hallmark of tissue damage from air pollution. However, the specific role of circular RNAs (circRNAs) in the injury of intestinal tissue caused by autophagy remains unclear. Here, we established 42-days old ammonia-exposed broiler models and observed that autophagy flux in broiler jejunum was activated under ammonia exposure. Meanwhile, a total of eight significantly dysregulated expressed circRNAs were obtained and a circRNAs-miRNAs-genes interaction networks were constructed by bioinformatics analysis. Furthermore, an axis named circRNA-IGLL1/miR-15a/RNF43 was predicted to participate in the excessive autophagy by targeting RNF43. The target relationship was proved by dual-luciferase reporter assay in vitro. Mechanistically, downregulated circRNA-IGLL1 could suppress the expression of RNF43 in ammonia-exposed jejunum and the Wnt/ß-catenin pathway was activated. Inhibition of miR-15a reversed autophagy caused by downregulated circRNA-IGLL1. CircRNA-IGLL1 could competitively bind miR-15a to regulate RNF43 expression, thus modulating the occurrence of autophagy. Taken together, our results showed that circRNA-IGLL1/miR-15a/RNF43 axis is involved in ammonia-induced intestinal autophagy in broilers.


Assuntos
MicroRNAs , RNA Circular , Amônia/toxicidade , Animais , Autofagia , Galinhas , Humanos , Jejuno , MicroRNAs/genética , Ubiquitina-Proteína Ligases , beta Catenina
14.
Environ Pollut ; 292(Pt A): 118333, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637829

RESUMO

While interactions with global warming and multigenerational effects are considered crucial to improve risk assessment of pesticides, these have rarely been studied in an integrated way. While heat extremes can magnify pesticide toxicity, no studies tested how their combined effects may transmit to the next generation. We exposed mosquito larvae in a full factorial, two-generation experiment to a heat spike followed by chlorpyrifos exposure. As expected, the heat spike magnified the chlorpyrifos-induced lethal and sublethal effects within both generations. Only when preceded by the heat spike, chlorpyrifos increased mortality and reduced the population growth rate. Moreover, chlorpyrifos-induced reductions in heat tolerance (CTmax), acetylcholinesterase (AChE) activity and development time were further magnified by the heat spike. Notably, when parents were exposed to chlorpyrifos, the chlorpyrifos-induced lethal and sublethal effects in the offspring were smaller, indicating increased tolerance to chlorpyrifos. In contrast, there was no such multigenerational effect for the heat spike. Despite the adaptive multigenerational effect to the pesticide, the synergism with the heat spike was still present in the offspring generation. Generally, our results provide important evidence that short exposure to pulse-like global change stressors can strongly affect organisms within and across generations, and highlight the importance of considering multigenerational effects in risk assessment.


Assuntos
Clorpirifos , Culicidae , Praguicidas , Acetilcolinesterase , Animais , Clorpirifos/toxicidade , Temperatura Alta , Larva
15.
Environ Pollut ; 292(Pt A): 118341, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637832

RESUMO

With the development of marine oil industry, oil spill accidents will inevitably occur, further polluting the intertidal zone and causing biological poisoning. The muddy intertidal zone and Boleophthalmus pectinirostris were selected as the research objects to conduct indoor acute exposure experiments within 48 h of crude oil pollution. Statistical analysis was used to reveal the activity changes of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) in the gills and liver of mudskipper. Then, integrated biomarker response (IBR) indicators were established to comprehensively evaluate the biological toxicity. The results showed that the activities of SOD, CAT and GST in livers were higher than those in gills, and the maximum induction multipliers of SOD, CAT and GPx in livers appeared earlier than those in gills. Both SOD and GPx activities were induced at low pollutant concentrations and inhibited at high pollutant concentrations. For the dose-effect, the change trends of CAT and SOD were roughly inversed. There was substrate competition between GPx and CAT, with opposite trends over time. The activating mechanism of GST was similar to that of GPx, and the activation time was earlier than that of GPx. In terms of dose-effect trends, the IBR showed that the antioxidant enzymes activities in biological tissues were induced by low and inhibited by high pollutant concentrations. Overall, SOD and GPx in gills and CAT and GST in livers of the mudskippers were suitable as representative markers to comprehensively analyze and evaluate the biotoxicity effects of oil pollution in the intertidal zone. The star plots and IBR values obtained after data standardization were consistent with the enzyme activity differences, which can be used as valid supplementary indexes for biotoxicity evaluation. These research findings provide theoretical support for early indicators of biological toxicity after crude oil pollution in intertidal zones.


Assuntos
Antioxidantes , Petróleo , Animais , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Petróleo/toxicidade
16.
Environ Pollut ; 292(Pt A): 118335, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637835

RESUMO

Sown seeds are a key component of many farmland birds' diets due to natural food shortages in autumn and winter. Because these seeds are often treated with pesticides, their ingestion by birds can result in toxic effects. For risk assessment, data on treated seed toxicity should be combined with information about exposure risk for wild birds and the factors that modulate it. We characterized the exposure of red-legged partridges to pesticide-treated seeds through the analysis of digestive contents of birds shot by hunters (n = 194) in an agricultural region in central Spain. We measured the contribution of sown seeds to the partridges' diet and how it related to pesticide exposure. Moreover, we evaluated the influence of landscape composition on the intake of sown seeds and pesticides by partridges. During peak sowing time, seeds constituted half (50.7%) of the fresh biomass ingested by partridges, which consumed mostly winter cereal seeds (42.3% of biomass). Residues of seven fungicides and one insecticide (active ingredients) were detected in 33.0% of birds. The presence of pesticides in digestive contents was linked to the ingestion of cereal sown seeds. Moreover, dietary exposure of birds to pesticides was modulated by landscape characteristics, being lower in areas with heterogeneous landscapes, greater habitat mosaic and more natural vegetation. The estimated dietary intake of pesticides resulting from our field observations, in combination with experimental data on pesticide toxicity, raise concerns about the risks that pesticide-treated cereal seeds pose to granivorous bird populations. Our results highlight the importance of farming landscape composition and diversification, which should be considered as a priority in the agricultural policy to mitigate pesticide risks to farmland birds through the consumption of treated seeds.


Assuntos
Fungicidas Industriais , Galliformes , Inseticidas , Animais , Fungicidas Industriais/toxicidade , Inseticidas/análise , Inseticidas/toxicidade , Sementes/química , Espanha
17.
Environ Pollut ; 292(Pt A): 118363, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648840

RESUMO

Microplastics are sometimes considered not harmful at environmentally relevant concentrations. Yet, such studies were conducted under standard thermal conditions and thereby ignored the impacts of higher mean temperatures (MT), and especially daily temperature fluctuations (DTF) under global warming. Moreover, an evolutionary perspective may further benefit the future risk assessment of microplastics under global warming. Here, we investigated the effects of two generations of exposure to an environmentally relevant concentration of polystyrene microplastics (5 µg L-1) under six thermal conditions (2 MT × 3 DTF) on the life history, physiology, and behaviour of Daphnia magna. To assess the impact of thermal evolution we thereby compared Daphnia populations from high and low latitudes. At the standard ecotoxic thermal conditions (constant 20 °C) microplastics almost had no effect except for a slight reduction of the heartbeat rate. Yet, at the challenging thermal conditions (higher MT and/or DTF), microplastics affected each tested variable and caused an earlier maturation, a higher fecundity and intrinsic growth rate, a decreased heartbeat rate, and an increased swimming speed. These effects may be partly explained by hormesis and/or an adaptive response to stress in Daphnia. Moreover, exposure to microplastics at the higher mean temperature increased the fecundity and intrinsic growth rate of cold-adapted high-latitude Daphnia, but not of the warm-adapted low-latitude Daphnia, suggesting that thermal evolution in high-latitude Daphnia may buffer the effects of microplastics under future warming. Our results highlight the critical importance of DTF and thermal evolution for a more realistic risk assessment of microplastics under global warming.


Assuntos
Microplásticos , Plásticos , Animais , Daphnia , Aquecimento Global , Plásticos/toxicidade , Temperatura
18.
Environ Pollut ; 292(Pt A): 118328, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653587

RESUMO

The Mytilus mussels are spread all over the world and many related species coexist in several areas and can produce hybrid offspring. Mussels have been used for decades in national and international programs to monitor chemical contamination in the environment. Differences in bioaccumulation and biotransformation abilities between species and their hybrids should be evaluated to assess the comparability of the results obtained within the international biomonitoring programs. The objective of this study was to characterize bioaccumulation abilities and biomarker responses in Mytilus edulis, Mytilus galloprovincialis and their hybrids via an in situ transplantation experimentation on their progenies. Four mussel groups (M. edulis, M. galloprovincialis and two hybrids batches) issued from genetically characterized parents were transplanted for one year in Charente Maritime (France) to ensure their exposure to identical sources of contamination. The bioaccumulation of several families of contaminants (trace metals, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, polychlorinated biphenyls), the response of several biomarkers (DNA strand breaks level, lysosomal membrane stability, metallothionein content, acetylcholine esterase activity) and some physiological parameters (growth, mortality, gonadal development), were analyzed. Differences were observed between species, however they were contaminant-specific. Variations in contaminants levels were observed between progenies, with higher levels of Cu, PBDE, PCB in M. edulis, and higher levels of Cd, Hg, Zn in M galloprovincialis. This study demonstrated that variations in contaminant bioaccumulation and different biomarker responses exist between Mytilus species in the field. Data on species or the presence of hybrid individuals (or introgression) is an important additional parameter to add to biomonitoring programs databases.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Bioacumulação , Biomarcadores/metabolismo , Ecotoxicologia , Monitoramento Ambiental , Humanos , Mytilus/metabolismo , Mytilus edulis/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Environ Pollut ; 292(Pt A): 118349, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653588

RESUMO

The adverse effects of fine atmospheric particulate matter with aerodynamic diameters of ≤2.5 µm (PM2.5) are closely associated with particulate chemicals. In this study, PM2.5 samples were collected from highway and industry sites in Hangzhou, China, during the autumn and winter, and their cytotoxicity and pulmonary toxicity and endocrine-disrupting potential (EDP) were evaluated in vitro and in vivo; the particulate polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), and heavy metals were then characterized. The toxicological results suggested that the PM2.5 from highway site induced higher cytotoxicity (cell viability inhibition, intracellular oxidative stress, and cell membrane injury) and pulmonary toxicity (inflammatory response (IR) and oxidative stress (OS)) than the samples from industry site, while the PM2.5 from industry site exhibited higher EDP (estrogenic and anti-androgenic activity). The cytotoxicity and pulmonary toxicity of PM2.5 in the winter were higher than those in the autumn, while no seasonal difference in the endocrine-disrupting potential was observed (p > 0.05). The Pearson correlation analysis between the biological effects and particulate chemicals revealed that the PM2.5-induced inflammatory response and oxidative stress were closely associated with the particulate PAHs and heavy metals (Pearson correlation coefficients: rIR, PAHs = 0.822-0.988, rIR, heavy metals = 0.895-0.971, rOS, PAHs = 0.843-0.986, and rOS, heavy metals = 0.887-0.933), while particulate di (2-ethylhexyl)phthalate (DEHP) substantially contributed to the EDP of PM2.5 (rEDP, DEHP = 0.981). This study indicated that the toxicity and EDP of PM2.5 could vary with the surrounding environment and season, which was closely associated with the variations of particulate chemicals. Further studies are needed to clarify the associations between the harmful effects of PM2.5 and other contributing factors.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental , Ésteres/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Estações do Ano
20.
Environ Pollut ; 292(Pt A): 118373, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662592

RESUMO

Anthropogenic activities are the foremost reason of metal pollution in soils of the cultivated areas, resulting abnormal physiochemical processes in plants. Among metals contaminants, cadmium (Cd) is one of the most injurious contaminants that deleteriously affect physiological activities, growth and yield of the crop plants. Keeping in view the stress mitigation potential of titanium dioxide (TiO2), the existing research work was premeditated to inspect the beneficial role of seed priming with titanium dioxide nanoparticles (TiO2-NPs) on biochemical, morphological and physiological characteristics of Coriandrum sativum L. (coriander) plants under Cd stress. For this purpose, C. sativum seeds were primed with 0, 40, 80 and 160 mg L-1 TiO2-NPs. Cadmium stress triggered a significant decrease in chlorophyll a content (49%), chlorophyll b content (44%), photosynthetic rate (62%) and plant growth (51%) as compared with control. Tanium dioxide nanoparticles treated seedlings exhibited reduced Cd contents besides improved agronomic traits (seedlings biomass, number of seeds and yield). The TiO2-NPs treatment declined the magnitude of EL and MDA by 1.5 fold and 1.71 fold, respectively. Furthermore, TiO2-NPs diminished oxidative injuries in plants exposed to Cd stress. Additionally, TiO2-NPs enhanced the biosynthesis of osmatic regulators (proline) by 47% which helped in the mitigation of Cd persuaded toxicity in plants. Briefly, treatment of 80 mg L-1 TiO2-NPs perhaps ameliorates the deleterious influence of Cd stress and enhance the yield of coriander.


Assuntos
Coriandrum , Nanopartículas , Antioxidantes , Cádmio/toxicidade , Clorofila A , Estresse Oxidativo , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...