RESUMO
Mitochondrial malfunction and morphologic disorganization have been observed in brain cells as part of complex pathological changes. However, it is unclear what may be the role of mitochondria in the initiation of pathologic processes or if mitochondrial disorders are consequences of earlier events. We analyzed the morphologic reorganization of organelles in an embryonic mouse brain during acute anoxia using an immunohistochemical identification of the disordered mitochondria, followed by electron microscopic three-dimensional (3D) reconstruction. We found swelling of the mitochondrial matrix after 3 h anoxia and probable dissociation of mitochondrial stomatin-like protein 2 (SLP2)-containing complexes after 4.5 h anoxia in the neocortex, hippocampus, and lateral ganglionic eminence. Surprisingly, deformation of the Golgi apparatus (GA) was detected already after 1 h of anoxia, when the mitochondria and other organelles still had a normal ultrastructure. The disordered GA showed concentrical swirling of the cisternae and formed spherical onion-like structures with the trans-cisterna in the center of the sphere. Such disturbance of the Golgi architecture likely interferes with its function for post-translational protein modification and secretory trafficking. Thus, the GA in embryonic mouse brain cells may be more vulnerable to anoxic conditions than the other organelles, including mitochondria.
Assuntos
Complexo de Golgi , Mitocôndrias , Camundongos , Animais , Complexo de Golgi/ultraestrutura , Organelas , Encéfalo , HipóxiaRESUMO
Widely used for soil amendment, carbon sequestration, and remediation of contaminated soils, biochars (BCs) inevitably produce a large number of nanoparticles with relatively high mobility. Geochemical aging alters chemical structure of these nanoparticles and thus affect their colloidal aggregation and transport behavior. In this study, the transport of ramie derived nano-BCs (after ball-milling) was investigated by different aging treatments (i.e., photo (PBC) and chemical aging (NBC)) as well as the managing BC under different physicochemical factors (i.e., flow rates, ionic strengths (IS), pH, and coexisting cations). Consequences of the column experiments indicated aging promoted the mobility of the nano-BCs. Compared to the nonaging BC, consequences of spectroscopic analysis demonstrated the aging BCs exhibited a number of tiny corrosion pores. Both of these aging treatments contribute to a more negative zeta potential and a higher dispersion stability of the nano-BCs, which is caused by the abundance of O-functional groups. Also the specific surface area and mesoporous volume of both aging BCs increased significantly, with the increase being more pronounced for NBC. The breakthrough curves (BTCs) obtained for the three nano-BCs were modelled by the advection-dispersion equation (ADE), which included first-order deposition and release terms. The ADE revealed high mobility of aging BCs, which meant their retention in saturated porous media was reduced. This work contributes to a comprehensive understanding of the transport of aging nano-BCs in the environment.
Assuntos
Nanopartículas , Solo , Boehmeria/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria por Raios X , Concentração de Íons de Hidrogênio , Movimento , Cátions/química , Meio Ambiente , Solo/química , Fatores de Tempo , Modelos TeóricosRESUMO
OBJECTIVE: To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability. METHODS: A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1ßwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry. RESULTS: The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1ß (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01). CONCLUSION: SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
Assuntos
Isquemia Encefálica , Ferroptose , Isoflavonas , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Metaloproteinase 9 da Matriz/metabolismo , Soja/metabolismo , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Isquemia Encefálica/metabolismo , Infarto Cerebral , Traumatismo por Reperfusão/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Infarto da Artéria Cerebral MédiaRESUMO
Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.
Assuntos
Microscopia Crioeletrônica , RNA Helicases DEAD-box , MicroRNAs , Precursores de RNA , Ribonuclease III , Humanos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/ultraestrutura , MicroRNAs/biossíntese , MicroRNAs/química , MicroRNAs/metabolismo , MicroRNAs/ultraestrutura , Mutação , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura , Precursores de RNA/química , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , RNA de Cadeia Dupla/metabolismo , Especificidade por SubstratoRESUMO
Antibiotics are now considered as emerging environmental pollutants due to their persistent nature and continuous exposure through irrigation with wastewater contaminated with antibiotics. The aim of present study was to assess the potential of nanoparticles for the photodegradation of antibiotics and subsequent stress alleviation via Titania oxide (TiO2) application for improvement in crop productivity and quality in terms of the nutritional composition. In the first phase, different nanoparticles, TiO2, Zinc oxide (ZnO), and Iron oxide (Fe2O3) with varying concentrations (40-60 mg L-1) and time-periods (1-9 days) were tested to degrade amoxicillin (Amx) and levofloxacin (Lev) @ 5 mg L-1 under the visible light. Results indicated that TiO2 nanoparticles (50 mg L-1) were the most effective nanoparticles for the removal of both antibiotics with maximum degradation of 65% and 56% for Amx and Lev, respectively, on the 7th day. In the second phase, a pot experiment was conducted in which TiO2 (50 mg L-1) was applied individually and along with antibiotics (5 mg L-1) in order to evaluate the effect of nanoparticles on stress alleviation for growth promotion of wheat exposed to antibiotics. Plant biomass was reduced by Amx (58.7%) and Lev (68.4%) significantly (p < 0.05) when compared to the control. However, co-application of TiO2 and antibiotics improved the total iron (34.9% and 42%), carbohydrate (33% and 31%), and protein content (36% and 33%) in grains under Amx and Lev stress, respectively. The highest plant length, grain weight, and nutrient uptake were observed upon application of TiO2 nanoparticles alone. Total iron, carbohydrates, and proteins in grains were significantly increased by 52%, 38.5%, and 40%, respectively compared to the control (with antibiotics). The findings highlight the potential of TiO2 nanoparticles for stress alleviation, growth, and nutritional improvement under antibiotic stress upon irrigation with contaminated wastewater.
Assuntos
Agricultura , Amoxicilina , Levofloxacino , Nanopartículas Metálicas , Poluentes Químicos da Água , Purificação da Água , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Agricultura/métodos , Paquistão , Triticum/efeitos dos fármacos , Antibacterianos/química , Poluentes Químicos da Água/química , Luz Solar , Óxido de Zinco/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Amoxicilina/química , Levofloxacino/química , Purificação da Água/métodosRESUMO
Diabetic wounds are problematic to heal owing to microbial infections as well as decreased proliferation and high concentrations of reactive oxygen species. In this study, a double-layered nanofibrous mat containing grape seed extract (GSE) and silver sulfadiazine (SSD) was fabricated. A synthetic biodegradable polymer, e.g., polycaprolactone (PCL), and a natural material (i.e., collagen) were employed as wound dressing substances. The results showed that GSE possesses antioxidant activity which can be helpful in reducing free radicals. The platform exhibited antibacterial activity against gram-positive and -negative bacteria. The double-layered nanofibrous mat containing GSE and SSD not only was not toxic but also amplified the cell proliferation compared to a pure mat, showing the effect of plant extract. After induction of a round wound, the animals were divided into three groups, namely (1) normal group (receiving + GSE/-GSE nanofiber), (2) diabetic group (receiving + GSE/-GSE nanofiber), and (3) control group (receiving gauze). In vivo evaluation demonstrated no significant differences in the healing process of normal rats. Surprisingly, fully repaired skin was observed on day 14 in the double-layered nanofibrous mat containing GSE in the normal and diabetic groups whereas the wound of diabetic rats treated with pure mat was not completely healed. The macroscopic and microscopic results after 14 days showed the following order in wound repair: Normal/ + GES > Diabetic/ + GSE > Normal/-GES > Diabetic/-GSE > control (with gauze) (p < 0.05). Accordingly, the double-layered nanofibrous mat containing GSE and SSD used in the present study could be considered as a suitable wound dressing in order to shorten healing time and prevent infection during the wound healing process.
Assuntos
Diabetes Mellitus Experimental , Extrato de Sementes de Uva , Nanofibras , Ratos , Animais , Antioxidantes/farmacologia , Nanofibras/ultraestrutura , Diabetes Mellitus Experimental/tratamento farmacológico , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sulfadiazina de Prata/farmacologia , Extrato de Sementes de Uva/farmacologiaRESUMO
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.
Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/ultraestrutura , COVID-19/virologia , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Especificidade por Substrato , Guanosina Trifosfato/metabolismo , Capuzes de RNARESUMO
The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA). The LA-bound spike protein adopts a non-infectious locked conformation which is more stable than the infectious form and shields important immunogenic epitopes. Here, the impact of LA binding on viral infectivity and replication, and the evolutionary conservation of the pocket in other highly pathogenic coronaviruses, including SARS-CoV-2 variants of concern (VOCs), are reviewed. The importance of LA metabolic products, the eicosanoids, in regulating the human immune response and inflammation is highlighted. Lipid and fatty-acid binding to a hydrophobic pocket in proteins on the virion surface appears to be a broader strategy employed by viruses, including picornaviruses and Zika virus. Ligand binding stabilizes their protein structure and assembly, and downregulates infectivity. In the case of rhinoviruses, this has been exploited to develop small-molecule antiviral drugs that bind to the hydrophobic pocket. The results suggest a COVID-19 antiviral treatment based on the LA-binding pocket.
Assuntos
Antivirais , COVID-19 , Microscopia Crioeletrônica , Ácido Linoleico , SARS-CoV-2 , Humanos , Antivirais/metabolismo , Antivirais/farmacologia , Controle de Doenças Transmissíveis , COVID-19/terapia , COVID-19/virologia , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacologia , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestruturaRESUMO
INTRODUCTION: Quantitative and non-invasive measures of brain myelination and maturation during development are of great importance to both clinical and translational research communities. While the metrics derived from diffusion tensor imaging, are sensitive to developmental changes and some pathologies, they remain difficult to relate to the actual microstructure of the brain tissue. The advent of advanced model-based microstructural metrics requires histological validation. The purpose of the study was to validate novel, model-based MRI techniques, such as macromolecular proton fraction mapping (MPF) and neurite orientation and dispersion indexing (NODDI), against histologically derived indexes of myelination and microstructural maturation at various stages of development. METHODS: New Zealand White rabbit kits underwent serial in-vivo MRI examination at postnatal days 1, 5, 11, 18, and 25, and as adults. Multi-shell, diffusion-weighted experiments were processed to fit NODDI model to obtain estimates, intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Macromolecular proton fraction (MPF) maps were obtained from three source (MT-, PD-, and T1-weighted) images. After MRI sessions, a subset of animals was euthanized and regional samples of gray and white matter were taken for western blot analysis, to determine myelin basic protein (MBP), and electron microscopy, to estimate axonal, myelin fractions and g-ratio. RESULTS: MPF of white matter regions showed a period of fast growth between P5 and P11 in the internal capsule, with a later onset in the corpus callosum. This MPF trajectory was in agreement with levels of myelination in the corresponding brain region, as assessed by western blot and electron microscopy. In the cortex, the greatest increase of MPF occurred between P18 and P26. In contrast, myelin, according to MBP western blot, saw the largest hike between P5 and P11 in the sensorimotor cortex and between P11 and P18 in the frontal cortex, which then seemingly plateaued after P11 and P18 respectively. G-ratio by MRI markers decreased with age in the white matter. However, electron microscopy suggest a relatively stable g-ratio throughout development. CONCLUSION: Developmental trajectories of MPF accurately reflected regional differences of myelination rate in different cortical regions and white matter tracts. MRI-derived estimation of g-ratio was inaccurate during early development, likely due to the overestimation of axonal volume fraction by NODDI due to the presence of a large proportion of unmyelinated axons.
Assuntos
Imagem de Tensor de Difusão , Substância Branca , Coelhos , Animais , Prótons , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/ultraestrutura , NeuritosRESUMO
Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.
Assuntos
Mimiviridae , Proteínas do Capsídeo/genética , Genoma Viral , Microscopia Eletrônica , Mimiviridae/genética , Mimiviridae/ultraestrutura , FilogeniaRESUMO
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.
Assuntos
Regulação Alostérica , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G , Animais , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Conformação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestruturaRESUMO
Adolescence is a critical period of postnatal development characterized by social, emotional, and cognitive changes. These changes are increasingly understood to depend on white matter development. White matter is highly vulnerable to the effects of injury, including secondary degeneration in regions adjacent to the primary injury site which alters the myelin ultrastructure. However, the impact of such alterations on adolescent white matter maturation is yet to be investigated. To address this, female piebald-virol-glaxo rats underwent partial transection of the optic nerve during early adolescence (postnatal day (PND) 56) with tissue collection two weeks (PND 70) or three months later (PND 140). Axons and myelin in the transmission electron micrographs of tissue adjacent to the injury were classified and measured based on the appearance of the myelin laminae. Injury in adolescence impaired the myelin structure in adulthood, resulting in a lower percentage of axons with compact myelin and a higher percentage of axons with severe myelin decompaction. Myelin thickness did not increase as expected into adulthood after injury and the relationship between the axon diameter and myelin thickness in adulthood was altered. Notably, dysmyelination was not observed 2 weeks postinjury. In conclusion, injury in adolescence altered the developmental trajectory, resulting in impaired myelin maturation when assessed at the ultrastructural level in adulthood.
Assuntos
Doenças Desmielinizantes , Traumatismos do Nervo Óptico , Feminino , Animais , Ratos , Bainha de Mielina/fisiologia , Axônios/ultraestrutura , Nervo Óptico/fisiologia , Traumatismos do Nervo Óptico/complicações , Doenças Desmielinizantes/complicaçõesRESUMO
Mechanical properties of healthy and Dupuytren fibroblasts were investigated by atomic force microscopy (AFM). In addition to standard force curves, rheological properties were assessed using an oscillatory testing methodology, in which the frequency was swept from 1 Hz to 1 kHz, and data were analyzed using the structural damping model. Dupuytren fibroblasts showed larger apparent Young's modulus values than healthy ones, which is in agreement with previous results. Moreover, cell mechanics were compared before and after ML-7 treatment, which is a myosin light chain kinase inhibitor (MLCK) that reduces myosin activity and hence cell contraction. We employed two different concentrations of ML-7 inhibitor and could observe distinct cell reactions. At 1 µM, healthy and scar fibroblasts did not show measurable changes in stiffness, but Dupuytren fibroblasts displayed a softening and recovery after some time. When increasing ML-7 concentration (3 µM), the majority of cells reacted, Dupuytren fibroblasts were the most susceptible, not being able to recover from the drug and dying. These results suggested that ML-7 is a potent inhibitor for MLCK and that myosin II is essential for cytoskeleton stabilization and cell survival.
Assuntos
Citoesqueleto , Contratura de Dupuytren , Fibroblastos , Microscopia de Força Atômica , Contração Muscular , Cadeias Leves de Miosina , Humanos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Contratura de Dupuytren/tratamento farmacológico , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fenômenos Mecânicos , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/farmacologia , Quinase de Cadeia Leve de Miosina/uso terapêutico , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologiaRESUMO
Many oceanic prey animals use transparent bodies to avoid detection. However, conspicuous eye pigments, required for vision, compromise the organisms' ability to remain unseen. We report the discovery of a reflector overlying the eye pigments in larval decapod crustaceans and show how it is tuned to render the organisms inconspicuous against the background. The ultracompact reflector is constructed from a photonic glass of crystalline isoxanthopterin nanospheres. The nanospheres' size and ordering are modulated to tune the reflectance from deep blue to yellow, enabling concealment in different habitats. The reflector may also function to enhance the acuity or sensitivity of the minute eyes by acting as an optical screen between photoreceptors. This multifunctional reflector offers inspiration for constructing tunable artificial photonic materials from biocompatible organic molecules.
Assuntos
Mimetismo Biológico , Crustáceos , Células Fotorreceptoras de Invertebrados , Visão Ocular , Animais , Crustáceos/fisiologia , Olho/ultraestrutura , Fótons , Mimetismo Biológico/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologiaRESUMO
Herein, we use scanning and transmission electron microscopy to describe the foregut (mouth, pharyngeal canal, and associated epithelia and musculature) of an adult freshwater fish blood fluke, Sanguinicola volgensis (Rasín, 1929) McIntosh, 1934, infecting the blood of sabre, Pelecus cultratus Linnaeus, 1758 (Cypriniformes: Leuciscidae) from the Volga River, Russia. Our results indicate that S. volgensis has a pharynx and lacks an oral sucker and that its pharyngeal canal acts as a peristaltic pump that sucks blood into the esophagus, whereupon digestion commences with granules secreted from the esophageal epithelium. We saw no evidence of longitudinal muscle fibers beneath the pharyngeal canal epithelium, pharyngeal glands, or pharyngeal epithelial cells or muscle cells within the pharyngeal muscular complex; collectively indicating the presence of a pharynx rather than an oral sucker. The specialized epithelial lining associated with the mouth and pharyngeal canal evidently is unique among neodermatans; it is smooth, â¼40 nm thick anteriorly, and thickens (â¼250-700 nm) posteriorly as the mouth cavity transitions into the pharyngeal canal. The pharyngeal canal epithelium has lumps of dense material resembling those of the basal lamina and fibrous coat of the tegument. The actin-like material within the pharyngeal cavity epithelium could provide structural support to the pharynx.
Assuntos
Sistema Digestório , Schistosomatidae , Animais , Faringe/ultraestrutura , Microscopia Eletrônica de Transmissão , EsôfagoRESUMO
Intra- and extracellular depositions and inclusions occur in a wide range of diseases with exogenous (e.g. infectious, environmental and toxic) or endogenous (e.g. genetic, inflammatory, neoplastic and degenerative) aetiology. The noxious agent and the pathogenesis influence the organ of manifestation, the subcellular localisation and the ultrastructural appearance of the depositions. Whereas some of the inclusions like pathogens, foreign material (e.g. asbestos) or microvilli have an almost pathognomonic morphology, other inclusions are present in lower amounts also under normal conditions (e.g. lipid vacuoles and glycogen). Therefore, the interpretation of ultrastructural findings makes a correlation with the histological features and clinical constellation necessary. Auxiliary investigations by electron energy loss spectroscopy (EELS) or electron spectroscopic imaging (ESI) provide additional information about the chemical composition of the material and are therefore especially helpful for the identification of foreign substances. This review focuses on a selection of deposits and inclusions relevant to diagnostic pathology.
Assuntos
Corpos de Inclusão , Vacúolos , Corpos de Inclusão/ultraestrutura , Microvilosidades/ultraestrutura , Microscopia Eletrônica de Transmissão por Filtração de Energia , GlicogênioRESUMO
Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
Assuntos
Tomografia com Microscopia Eletrônica , Mitocôndrias , Membranas Mitocondriais , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Estresse do Retículo EndoplasmáticoRESUMO
Coordination between the microtubule and actin networks is essential for cell motility, neuronal growth cone guidance, and wound healing. Members of the CLASP (cytoplasmic linker-associated protein) family of proteins have been implicated in the cytoskeletal cross-talk between microtubules and actin networks; however, the molecular mechanisms underlying the role of CLASP in cytoskeletal coordination are unclear. Here, we investigate CLASP2α's cross-linking function with microtubules and F-actin. Our results demonstrate that CLASP2α cross-links F-actin to the microtubule lattice in vitro. We find that the cross-linking ability is retained by L-TOG2-S, a minimal construct containing the TOG2 domain and serine-arginine-rich region of CLASP2α. Furthermore, CLASP2α promotes the accumulation of multiple actin filaments along the microtubule, supporting up to 11 F-actin landing events on a single microtubule lattice region. CLASP2α also facilitates the dynamic organization of polymerizing actin filaments templated by the microtubule network, with F-actin forming bridges between individual microtubules. Finally, we find that depletion of CLASPs in vascular smooth muscle cells results in disorganized actin fibers and reduced coalignment of actin fibers with microtubules, suggesting that CLASP and microtubules contribute to higher-order actin structures. Taken together, our results indicate that CLASP2α can directly cross-link F-actin to microtubules and that this microtubule-CLASP-actin interaction may influence overall cytoskeletal organization in cells.
Assuntos
Citoesqueleto de Actina , Actinas , Microtúbulos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , HumanosRESUMO
Leaf movement in vascular plants is executed by joint-like structures called pulvini. Many structural features of pulvini have been described at subcellular, cellular, and tissue scales of organization; however, how the characteristic hierarchical architecture of plant tissue influences pulvinus-mediated actuation remains poorly understood. To investigate the influence of multiscale structure on turgor-driven pulvinus movements, we visualized Mimosa pudica pulvinus morphology and anatomy at multiple hierarchical scales of organization and used osmotic perturbations to experimentally swell pulvini in incremental states of dissection. We observed directional cellulose microfibril reinforcement, oblong, spindle-shaped primary pit fields, and longitudinally slightly compressed cell geometries in the parenchyma of M. pudica. Consistent with these observations, isolated parenchyma tissues displayed highly anisotropic swelling behaviors indicating a high degree of mechanical anisotropy. Swelling behaviors at higher scales of pulvinus organization were also influenced by the presence of the pulvinus epidermis, which displayed oblong epidermal cells oriented transverse to the pulvinus long axis. Our findings indicate that structural specializations spanning multiple hierarchical scales of organization guide hydraulic deformation of pulvini, suggesting that multiscale mechanics are crucial to the translation of cell-level turgor variations into organ-scale pulvinus motion in vivo.
Assuntos
Mimosa , Pulvínulo , Anisotropia , Pulvínulo/ultraestrutura , Folhas de Planta , Mimosa/anatomia & histologia , MovimentoRESUMO
Transfer RNA (tRNA) molecules are essential to decode messenger RNA codons during protein synthesis. All known tRNAs are heavily modified at multiple positions through post-transcriptional addition of chemical groups. Modifications in the tRNA anticodons are directly influencing ribosome decoding and dynamics during translation elongation and are crucial for maintaining proteome integrity. In eukaryotes, wobble uridines are modified by Elongator, a large and highly conserved macromolecular complex. Elongator consists of two subcomplexes, namely Elp123 containing the enzymatically active Elp3 subunit and the associated Elp456 hetero-hexamer. The structure of the fully assembled complex and the function of the Elp456 subcomplex have remained elusive. Here, we show the cryo-electron microscopy structure of yeast Elongator at an overall resolution of 4.3 Å. We validate the obtained structure by complementary mutational analyses in vitro and in vivo. In addition, we determined various structures of the murine Elongator complex, including the fully assembled mouse Elongator complex at 5.9 Å resolution. Our results confirm the structural conservation of Elongator and its intermediates among eukaryotes. Furthermore, we complement our analyses with the biochemical characterization of the assembled human Elongator. Our results provide the molecular basis for the assembly of Elongator and its tRNA modification activity in eukaryotes.
The multi-subunit Elongator complex mediates the addition of a carboxymethyl group to wobble uridines in eukaryotic tRNAs. This tRNA modification is crucial to preserve the integrity of cellular proteomes and to protects us against severe neurodegenerative diseases. Elongator is organized in two distinct modules (i) the larger Elp123 subcomplex that binds and modifies the suitable tRNA substrate and (ii) the smaller Elp456 subcomplex that assists the release of the modified tRNA. The presented cryo-EM structures of Elongator show that the assemblies are very dynamic and undergo conformational rearrangements at consecutive steps of the process. Last but not least, the study provides a detailed reaction scheme and shows that the architecture of Elongator is highly conserved from yeast to mammals.