Influence of head position on the spatial representation of acoustic targets.
J Neurophysiol
; 81(6): 2720-36, 1999 Jun.
Article
em En
| MEDLINE
| ID: mdl-10368392
Sound localization in humans relies on binaural differences (azimuth cues) and monaural spectral shape information (elevation cues) and is therefore the result of a neural computational process. Despite the fact that these acoustic cues are referenced with respect to the head, accurate eye movements can be generated to sounds in complete darkness. This ability necessitates the use of eye position information. So far, however, sound localization has been investigated mainly with a fixed head position, usually straight ahead. Yet the auditory system may rely on head motor information to maintain a stable and spatially accurate representation of acoustic targets in the presence of head movements. We therefore studied the influence of changes in eye-head position on auditory-guided orienting behavior of human subjects. In the first experiment, we used a visual-auditory double-step paradigm. Subjects made saccadic gaze shifts in total darkness toward brief broadband sounds presented before an intervening eye-head movement that was evoked by an earlier visual target. The data show that the preceding displacements of both eye and head are fully accounted for, resulting in spatially accurate responses. This suggests that auditory target information may be transformed into a spatial (or body-centered) frame of reference. To further investigate this possibility, we exploited the unique property of the auditory system that sound elevation is extracted independently from pinna-related spectral cues. In the absence of such cues, accurate elevation detection is not possible, even when head movements are made. This is shown in a second experiment where pure tones were localized at a fixed elevation that depended on the tone frequency rather than on the actual target elevation, both under head-fixed and -free conditions. To test, in a third experiment, whether the perceived elevation of tones relies on a head- or space-fixed target representation, eye movements were elicited toward pure tones while subjects kept their head in different vertical positions. It appeared that each tone was localized at a fixed, frequency-dependent elevation in space that shifted to a limited extent with changes in head elevation. Hence information about head position is used under static conditions too. Interestingly, the influence of head position also depended on the tone frequency. Thus tone-evoked ocular saccades typically showed a partial compensation for changes in static head position, whereas noise-evoked eye-head saccades fully compensated for intervening changes in eye-head position. We propose that the auditory localization system combines the acoustic input with head-position information to encode targets in a spatial (or body-centered) frame of reference. In this way, accurate orienting responses may be programmed despite intervening eye-head movements. A conceptual model, based on the tonotopic organization of the auditory system, is presented that may account for our findings.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Localização de Som
/
Percepção Espacial
/
Movimentos da Cabeça
Tipo de estudo:
Prognostic_studies
Limite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
J Neurophysiol
Ano de publicação:
1999
Tipo de documento:
Article
País de afiliação:
Holanda
País de publicação:
Estados Unidos