Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize.
Plant Physiol
; 122(3): 887-94, 2000 Mar.
Article
em En
| MEDLINE
| ID: mdl-10712553
Sulfite reductase (SiR) catalyzes the reduction of sulfite to sulfide in chloroplasts and root plastids using ferredoxin (Fd) as an electron donor. Using purified maize (Zea mays L.) SiR and isoproteins of Fd and Fd-NADP(+) reductase (FNR), we reconstituted illuminated thylakoid membrane- and NADPH-dependent sulfite reduction systems. Fd I and L-FNR were distributed in leaves and Fd III and R-FNR in roots. The stromal concentrations of SiR and Fd I were estimated at 1.2 and 37 microM, respectively. The molar ratio of Fd III to SiR in root plastids was approximately 3:1. Photoreduced Fd I and Fd III showed a comparable ability to donate electrons to SiR. In contrast, when being reduced with NADPH via FNRs, Fd III showed a several-fold higher activity than Fd I. Fd III and R-FNR showed the highest rate of sulfite reduction among all combinations tested. NADP(+) decreased the rate of sulfite reduction in a dose-dependent manner. These results demonstrate that the participation of Fd III and high NADPH/NADP(+) ratio are crucial for non-photosynthetic sulfite reduction. In accordance with this view, a cysteine-auxotrophic Escherichia coli mutant defective for NADPH-dependent SiR was rescued by co-expression of maize SiR with Fd III but not with Fd I.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Zea mays
/
Oxirredutases atuantes sobre Doadores de Grupo Enxofre
/
Ferredoxinas
Idioma:
En
Revista:
Plant Physiol
Ano de publicação:
2000
Tipo de documento:
Article
País de publicação:
Estados Unidos