Cu2+-catalyzed oxidative degradation of thyroglobulin.
Free Radic Res
; 33(4): 359-68, 2000 Oct.
Article
em En
| MEDLINE
| ID: mdl-11022845
Thyroglobulin (Tg) was subjected to metal-catalyzed oxidation, and the oxidative degradation was analyzed by SDS-polyacrylamide gel electrophoresis under reducing conditions. In contrast to no effect of hydrogen peroxide (H2O2) alone on the Tg degradation, the inclusion of Cu2+ (30 microM), in combination with 2 mM H2O2, caused a remarkable degradation of Tg, time- and concentration-dependent. The action of Cu2+ was not mimicked by Fe2+, suggesting that Tg may interact selectively with Cu2+. A similar degradation of Tg was also observed with Cu2+/ascorbate system, and the concentration of Cu2+ (5-10 microM), in combination with ascorbate, required for the effective degradation was smaller than that of Cu2+ (10-30 microM) in combination with H2O2. In support of involvement of H2O2 in the Cu2+/ascorbate action, catalase expressed a complete protection. However, hydroxyl radical scavengers such as dimethylsulfoxide or mannitol failed to prevent the oxidation of Tg whereas phenolic compounds, which can interact with Cu2+, diminished the oxidative degradation, presumably consistent with the mechanism for Cu2+-catalyzed oxidation of protein. Moreover, the amount of carbonyl groups in Tg was increased as the concentration (3-100 microM) of Cu2+ was enhanced, while the formation of acid-soluble peptides was not remarkable in the presence of Cu2+ up to 200 microM. In further studies, Tg pretreated with heat or trichloroacetic acid seemed to be somewhat resistant to Cu2+-catalyzed oxidation, implying a possible involvement of protein conformation in the susceptibility to the oxidation. Based on these observations, it is proposed that Tg could be degraded non-enzymatically by Cu2+-catalyzed oxidation.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tireoglobulina
/
Oxidantes
/
Cobre
Limite:
Animals
Idioma:
En
Revista:
Free Radic Res
Assunto da revista:
BIOQUIMICA
Ano de publicação:
2000
Tipo de documento:
Article
País de publicação:
Reino Unido