In vitro evaluation of the disposition of A novel cysteine protease inhibitor.
Drug Metab Dispos
; 28(11): 1343-51, 2000 Nov.
Article
em En
| MEDLINE
| ID: mdl-11038163
K11777 (N-methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl) is a potent, irreversible cysteine protease inhibitor. Its therapeutic targets are cruzain, a cysteine protease of the protozoan parasite Trypanosoma cruzi, and cathepsins B and L, which are associated with cancer progression. We evaluated the metabolism of K11777 by human liver microsomes, isolated cytochrome P450 (CYP) enzymes, and flavin-containing monooxygenase 3 (FMO3) in vitro. K11777 was metabolized by human liver microsomes to three major metabolites: N-oxide K11777 (apparent K(m) = 14.0 +/- 4.5 microM and apparent V(max) = 3460 +/- 3190 pmol. mg(-1). min(-1), n = 4), beta-hydroxy-homoPhe K11777 (K(m) = 16.8 +/- 3.5 microM and V(max) = 1260 +/- 1090 pmol. mg(-1). min(-1), n = 4), and N-desmethyl K11777 (K(m) = 18.3 +/- 7.0 microM and V(max) = 2070 +/- 1830 pmol. mg(-1). min(-1), n = 4). All three K11777 metabolites were formed by isolated CYP3A and their formation by human liver microsomes was inhibited by the CYP3A inhibitor cyclosporine (50 microM, 54-62% inhibition) and antibodies against human CYP3A4/5 (100 microg of antibodies/100 microg microsomal protein, 55-68% inhibition). CYP2D6 metabolized K11777 to its N-desmethyl metabolite with an apparent K(m) (9.2 +/- 1.4 microM) lower than for CYP3A4 (25.0 +/- 4.0 microM) and human liver microsomes. The apparent K(m) for N-oxide K11777 formation by cDNA-expressed FMO3 was 109 +/- 11 microM. Based on the intrinsic formation clearances and the results of inhibition experiments (CYP2D6, 50 microM bufuralol; FMO3 mediated, 100 mM methionine) using human liver microsomes, it was estimated that CYP3A contributes to >80% of K11777 metabolite formation. K11777 was a potent (IC(50) = 0.06 microM) and efficacious (maximum inhibition 85%) NADPH-dependent inhibitor of human CYP3A4 mediated 6'beta-hydroxy lovastatin formation, suggesting that K11777 is not only a substrate but also a mechanism-based inhibitor of CYP3A4.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Inibidores de Cisteína Proteinase
Tipo de estudo:
Evaluation_studies
Limite:
Humans
Idioma:
En
Revista:
Drug Metab Dispos
Assunto da revista:
FARMACOLOGIA
Ano de publicação:
2000
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos