Regulatory functions of serine-46-phosphorylated HPr in Lactococcus lactis.
J Bacteriol
; 183(11): 3391-8, 2001 Jun.
Article
em En
| MEDLINE
| ID: mdl-11344147
In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a beta-glucoside-specific EII and a 6-P-beta-glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methyl beta-D-thiogalactoside (TMG) and 2-deoxy-D-glucose (2-DG). In vivo experiments with the ptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Bactérias
/
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato
/
Regulação Bacteriana da Expressão Gênica
/
Lactococcus lactis
/
Glucose
Idioma:
En
Revista:
J Bacteriol
Ano de publicação:
2001
Tipo de documento:
Article
País de afiliação:
França
País de publicação:
Estados Unidos