Magnetic resonance image analysis by information theoretic criteria and stochastic site models.
IEEE Trans Inf Technol Biomed
; 5(2): 150-8, 2001 Jun.
Article
em En
| MEDLINE
| ID: mdl-11420993
Quantitative analysis of magnetic resonance (MR) images is a powerful tool for image-guided diagnosis, monitoring, and intervention. The major tasks involve tissue quantification and image segmentation where both the pixel and context images are considered. To extract clinically useful information from images that might be lacking in prior knowledge, we introduce an unsupervised tissue characterization algorithm that is both statistically principled and patient specific. The method uses adaptive standard finite normal mixture and inhomogeneous Markov random field models, whose parameters are estimated using expectation-maximization and relaxation labeling algorithms under information theoretic criteria. We demonstrate the successful applications of the approach with synthetic data sets and then with real MR brain images.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Imageamento por Ressonância Magnética
/
Modelos Estatísticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
IEEE Trans Inf Technol Biomed
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2001
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos