Your browser doesn't support javascript.
loading
Multilayer neural networks with extensively many hidden units.
Rosen-Zvi, M; Engel, A; Kanter, I.
Afiliação
  • Rosen-Zvi M; Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, 52900 Israel.
Phys Rev Lett ; 87(7): 078101, 2001 Aug 13.
Article em En | MEDLINE | ID: mdl-11497920
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Redes Neurais de Computação Tipo de estudo: Risk_factors_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2001 Tipo de documento: Article País de publicação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Redes Neurais de Computação Tipo de estudo: Risk_factors_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2001 Tipo de documento: Article País de publicação: Estados Unidos