Your browser doesn't support javascript.
loading
Intrauterine growth retardation leads to the development of type 2 diabetes in the rat.
Simmons, R A; Templeton, L J; Gertz, S J.
Afiliação
  • Simmons RA; Division of Neonatology, Department of Pediatrics, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. rsimmons@mail.med.upenn.edu
Diabetes ; 50(10): 2279-86, 2001 Oct.
Article em En | MEDLINE | ID: mdl-11574409
ABSTRACT
Intrauterine growth retardation has been linked to the development of type 2 diabetes in later life. The mechanisms underlying this phenomenon are unknown. We have developed a model of uteroplacental insufficiency, a common cause of intrauterine growth retardation, in the rat. Bilateral uterine artery ligation was performed on day 19 of gestation (term is 22 days) in the pregnant rat; sham-operated pregnant rats served as controls. Birth weights of intrauterine growth-retarded (IUGR) animals were significantly lower than those of controls until approximately 7 weeks of age, when IUGR rats caught up to controls. Between 7 and 10 weeks of age, the growth of IUGR rats accelerated and surpassed that of controls, and by 26 weeks of age, IUGR rats were obese (P < 0.05 vs. controls). No significant differences were observed in blood glucose and plasma insulin levels at 1 week of age. However, between 7 and 10 weeks of age, IUGR rats developed mild fasting hyperglycemia and hyperinsulinemia (P < 0.05 vs. controls). At age 26 weeks, IUGR animals had markedly elevated levels of glucose (P < 0.05 vs. controls). IUGR animals were glucose-intolerant and insulin-resistant at an early age. First-phase insulin secretion in response to glucose was also impaired early in life in IUGR rats, before the onset of hyperglycemia. There were no significant differences in beta-cell mass, islet size, or pancreatic weight between IUGR and control animals at 1 and 7 weeks of age. However, in 15-week-old IUGR rats, the relative beta-cell mass was 50% that of controls, and by 26 weeks of age, beta-cell mass was less than one-third that of controls (P < 0.05). The data presented here support the hypothesis that an abnormal intrauterine milieu can induce permanent changes in glucose homeostasis after birth and lead to type 2 diabetes in adulthood.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Retardo do Crescimento Fetal Tipo de estudo: Etiology_studies Limite: Animals / Pregnancy Idioma: En Revista: Diabetes Ano de publicação: 2001 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Retardo do Crescimento Fetal Tipo de estudo: Etiology_studies Limite: Animals / Pregnancy Idioma: En Revista: Diabetes Ano de publicação: 2001 Tipo de documento: Article País de afiliação: Estados Unidos
...