Supersymmetric Hilbert space.
Proc Natl Acad Sci U S A
; 87(2): 653-7, 1990 Jan.
Article
em En
| MEDLINE
| ID: mdl-11607057
A generalization is given of the notion of a symmetric bilinear form over a vector space, which includes variables of positive and negative signature ("supersymmetric variables"). It is shown that this structure is substantially isomorphic to the exterior algebra of a vector space. A supersymmetric extension of the second fundamental theorem of invariant theory is obtained as a corollary. The main technique is a supersymmetric extension of the standard basis theorem. As a byproduct, it is shown that supersymmetric Hilbert space and supersymplectic space are in natural duality.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
1990
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos