Your browser doesn't support javascript.
loading
The membrane-binding properties of a class A amphipathic peptide.
Mozsolits, H; Lee, T-H; Clayton, A H A; Sawyer, W H; Aguilar, M-I.
Afiliação
  • Mozsolits H; Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Vic, Australia.
Eur Biophys J ; 33(2): 98-108, 2004 Apr.
Article em En | MEDLINE | ID: mdl-12879312
The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide-membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Fosfatidilgliceróis / Técnicas Biossensoriais / Dimiristoilfosfatidilcolina / Bicamadas Lipídicas / Lipossomos / Proteínas de Membrana Tipo de estudo: Prognostic_studies Idioma: En Revista: Eur Biophys J Assunto da revista: BIOFISICA Ano de publicação: 2004 Tipo de documento: Article País de afiliação: Austrália País de publicação: Alemanha
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Fosfatidilgliceróis / Técnicas Biossensoriais / Dimiristoilfosfatidilcolina / Bicamadas Lipídicas / Lipossomos / Proteínas de Membrana Tipo de estudo: Prognostic_studies Idioma: En Revista: Eur Biophys J Assunto da revista: BIOFISICA Ano de publicação: 2004 Tipo de documento: Article País de afiliação: Austrália País de publicação: Alemanha