Your browser doesn't support javascript.
loading
Dragon TF Association Miner: a system for exploring transcription factor associations through text-mining.
Pan, Hong; Zuo, Li; Choudhary, Vidhu; Zhang, Zhuo; Leow, Shoi Houi; Chong, Fui Teen; Huang, Yingliang; Ong, Victor Wui Siong; Mohanty, Bijayalaxmi; Tan, Sin Lam; Krishnan, S P T; Bajic, Vladimir B.
Afiliação
  • Pan H; Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613.
Nucleic Acids Res ; 32(Web Server issue): W230-4, 2004 Jul 01.
Article em En | MEDLINE | ID: mdl-15215386
We present Dragon TF Association Miner (DTFAM), a system for text-mining of PubMed documents for potential functional association of transcription factors (TFs) with terms from Gene Ontology (GO) and with diseases. DTFAM has been trained and tested in the selection of relevant documents on a manually curated dataset containing >3000 PubMed abstracts relevant to transcription control. On our test data the system achieves sensitivity of 80% with specificity of 82%. DTFAM provides comprehensive tabular and graphical reports linking terms to relevant sets of documents. These documents are color-coded for easier inspection. DTFAM complements the existing biological resources by collecting, assessing, extracting and presenting associations that can reveal some of the not so easily observable connections among the entities found which could explain the functions of TFs and help decipher parts of gene transcriptional regulatory networks. DTFAM summarizes information from a large volume of documents saving time and making analysis simpler for individual users. DTFAM is freely available for academic and non-profit users at http://research.i2r.a-star.edu.sg/DRAGON/TFAM/.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Software Tipo de estudo: Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2004 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Software Tipo de estudo: Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2004 Tipo de documento: Article País de publicação: Reino Unido