Relative uncertainty learning theory: an essay.
Int J Neural Syst
; 14(5): 293-311, 2004 Oct.
Article
em En
| MEDLINE
| ID: mdl-15593378
The aim of this manuscript is to present a detailed analysis of the algebraic and geometric properties of relative uncertainty theory (RUT) applied to neural networks learning. Through the algebraic analysis of the original learning criterion, it is shown that RUT gives rise to principal-subspace-analysis-type learning equations. Through an algebraic-geometric analysis, the behavior of such matrix-type learning equations is illustrated, with particular emphasis to the existence of certain invariant manifolds.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Incerteza
/
Aprendizagem
/
Modelos Psicológicos
/
Rede Nervosa
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Int J Neural Syst
Assunto da revista:
ENGENHARIA BIOMEDICA
/
INFORMATICA MEDICA
Ano de publicação:
2004
Tipo de documento:
Article
País de afiliação:
Itália
País de publicação:
Singapura