Your browser doesn't support javascript.
loading
Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
Cozzone, Alain J; El-Mansi, Mansi.
Afiliação
  • Cozzone AJ; Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France.
J Mol Microbiol Biotechnol ; 9(3-4): 132-46, 2005.
Article em En | MEDLINE | ID: mdl-16415587
During aerobic growth of Escherichia coli on acetate as sole source of carbon and energy, the organism requires the operation of the glyoxylate bypass enzymes, namely isocitrate lyase (ICL) and the anaplerotic enzyme malate synthase (MS). Under these conditions, the glyoxylate bypass enzyme ICL is in direct competition with the Krebs cycle enzyme isocitrate dehydrogenase (ICDH) for their common substrate and although ICDH has a much higher affinity for isocitrate, flux of carbon through ICL is assured by virtue of high intracellular level of isocitrate and the reversible phosphorylation/inactivation of a large fraction of ICDH. Reversible inactivation is due to reversible phosphorylation catalysed by ICDH kinase/phosphatase, which harbours both catalytic activities on the same polypeptide. The catalytic activities of ICDH kinase/phosphatase constitute a moiety conserved cycle, require ATP and exhibit 'zero-order ultrasensitivity'. The structural gene encoding ICDH kinase/phosphatase (aceK) together with those encoding ICL (aceA) and MS (aceB) form an operon (aceBAK; otherwise known as the ace operon) the expression of which is intricately regulated at the transcriptional level by IclR, FadR, FruR and IHF. Although ICDH, an NADP(+)-dependent, non-allosteric dimer, can be phosphorylated at multiple sites, it is the phosphorylation of the Ser-113 residue that renders the enzyme catalytically inactive as it prevents isocitrate from binding to the active site, which is a consequence of the negative charge carried on phosphoserine 113 and the conformational change associated with it. The ICDH molecule readily undergo domain shifts and/or induced-fit conformational changes to accommodate the binding of ICDH kinase/phosphatase, the function of which has now been shown to be central to successful adaptation and growth of E. coli and related genera on acetate and fatty acids.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Proteína Pós-Traducional / Proteínas de Escherichia coli / Escherichia coli / Isocitrato Desidrogenase Idioma: En Revista: J Mol Microbiol Biotechnol Assunto da revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2005 Tipo de documento: Article País de afiliação: França País de publicação: Suíça
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Proteína Pós-Traducional / Proteínas de Escherichia coli / Escherichia coli / Isocitrato Desidrogenase Idioma: En Revista: J Mol Microbiol Biotechnol Assunto da revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2005 Tipo de documento: Article País de afiliação: França País de publicação: Suíça