Your browser doesn't support javascript.
loading
A voltage-gated proton-selective channel lacking the pore domain.
Ramsey, I Scott; Moran, Magdalene M; Chong, Jayhong A; Clapham, David E.
Afiliação
  • Ramsey IS; Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Boston, Massachusetts 02115, USA.
Nature ; 440(7088): 1213-6, 2006 Apr 27.
Article em En | MEDLINE | ID: mdl-16554753
ABSTRACT
Voltage changes across the cell membrane control the gating of many cation-selective ion channels. Conserved from bacteria to humans, the voltage-gated-ligand superfamily of ion channels are encoded as polypeptide chains of six transmembrane-spanning segments (S1-S6). S1-S4 functions as a self-contained voltage-sensing domain (VSD), in essence a positively charged lever that moves in response to voltage changes. The VSD 'ligand' transmits force via a linker to the S5-S6 pore domain 'receptor', thereby opening or closing the channel. The ascidian VSD protein Ci-VSP gates a phosphatase activity rather than a channel pore, indicating that VSDs function independently of ion channels. Here we describe a mammalian VSD protein (H(V)1) that lacks a discernible pore domain but is sufficient for expression of a voltage-sensitive proton-selective ion channel activity. H(v)1 currents are activated at depolarizing voltages, sensitive to the transmembrane pH gradient, H+-selective, and Zn2+-sensitive. Mutagenesis of H(v)1 identified three arginine residues in S4 that regulate channel gating and two histidine residues that are required for extracellular inhibition of H(v)1 by Zn2+. H(v)1 is expressed in immune tissues and manifests the characteristic properties of native proton conductances (G(vH+)). In phagocytic leukocytes, G(vH+) are required to support the oxidative burst that underlies microbial killing by the innate immune system. The data presented here identify H(v)1 as a long-sought voltage-gated H+ channel and establish H(v)1 as the founding member of a family of mammalian VSD proteins.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Ativação do Canal Iônico / Canais Iônicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Ativação do Canal Iônico / Canais Iônicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Estados Unidos