Your browser doesn't support javascript.
loading
A "moonlighting" dizinc aminopeptidase from Streptomyces griseus: mechanisms for peptide hydrolysis and the 4 x 10(10)-fold acceleration of the alternative phosphodiester hydrolysis.
Ercan, Altan; Park, Hyun Ik; Ming, Li-June.
Afiliação
  • Ercan A; Department of Chemistry and Institute for Biomolecular Science, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, USA.
Biochemistry ; 45(46): 13779-93, 2006 Nov 21.
Article em En | MEDLINE | ID: mdl-17105197
ABSTRACT
A unique "enzyme catalytic promiscuity" has recently been observed, wherein a phosphodiester and a phosphonate ester are hydrolyzed by a dinuclear aminopeptidase and its metal derivatives from Streptomyces griseus (SgAP) [Park, H. I., Ming, L.-J. (1999) Angew. Chem., Int. Ed. Engl. 38, 2914-2916 and Ercan, A., Park, H. I., Ming, L.-J. (2000) Chem. Commun. 2501-2502]. Because tetrahedral phosphocenters often serve as transition-state inhibitors toward the hydrolysis of the peptide, phosphoester hydrolysis by peptidases is thus not expected to occur effectively and must take place through a unique mechanism. Owing to the very different structures and mechanistic requirements between phosphoesters and peptides during hydrolysis, the study of this effective phosphodiester hydrolysis by SgAP may provide further insight into the action of this enzyme that is otherwise not obtainable from regular peptide substrates. We present herein a detailed investigation of both peptide and phosphodiester hydrolyses catalyzed by SgAP. The latter exhibits a first-order rate enhancement of 4 x 10(10)-fold compared to the uncatalyzed reaction at pH 7.0 and 25 degrees C. The results suggest that peptide and phosphodiester hydrolyses by SgAP may share a common reaction mechanism to a certain extent. However, their differences in pH dependence, phosphate and fluoride inhibition patterns, and proton inventory reflect that they must follow different pathways. Mechanisms for the two hydrolyses are drawn on the basis of the results, which provide the foundation for further investigation of the catalytic promiscuity of this enzyme by means of physical and molecular biology methods. The catalytic versatility of SgAP suggests that this enzyme may serve as a unique "natural model system" for further investigation of dinuclear hydrolysis. A better understanding of enzyme catalytic promiscuity is also expected to shed light on the evolution and action of enzymes.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Streptomyces griseus / Ésteres / Aminopeptidases Idioma: En Revista: Biochemistry Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Streptomyces griseus / Ésteres / Aminopeptidases Idioma: En Revista: Biochemistry Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Estados Unidos