Your browser doesn't support javascript.
loading
Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
Jones, Anthony C; Arns, Christoph H; Sheppard, Adrian P; Hutmacher, Dietmar W; Milthorpe, Bruce K; Knackstedt, Mark A.
Afiliação
  • Jones AC; Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia.
Biomaterials ; 28(15): 2491-504, 2007 May.
Article em En | MEDLINE | ID: mdl-17335896
ABSTRACT
The three-dimensional (3D) structure and architecture of biomaterial scaffolds play a critical role in bone formation as they affect the functionality of the tissue-engineered constructs. Assessment techniques for scaffold design and their efficacy in bone ingrowth studies require an ability to accurately quantify the 3D structure of the scaffold and an ability to visualize the bone regenerative processes within the scaffold structure. In this paper, a 3D micro-CT imaging and analysis study of bone ingrowth into tissue-engineered scaffold materials is described. Seven specimens are studied in this paper; a set of three specimens with a cellular structure, varying pore size and implant material, and a set of four scaffolds with two different scaffold designs investigated at early (4 weeks) and late (12 weeks) explantation times. The difficulty in accurately phase separating the multiple phases within a scaffold undergoing bone regeneration is first highlighted. A sophisticated three-phase segmentation approach is implemented to develop high-quality phase separation with minimal artifacts. A number of structural characteristics and bone ingrowth characteristics of the scaffolds are quantitatively measured on the phase separated images. Porosity, pore size distributions, pore constriction sizes, and pore topology are measured on the original pore phase of the scaffold volumes. The distribution of bone ingrowth into the scaffold pore volume is also measured. For early explanted specimens we observe that bone ingrowth occurs primarily at the periphery of the scaffold with a constant decrease in bone mineralization into the scaffold volume. Pore size distributions defined by both the local pore geometry and by the largest accessible pore show distinctly different behavior. The accessible pore size is strongly correlated to bone ingrowth. In the specimens studied a strong enhancement of bone ingrowth is observed for pore diameters>100 microm. Little difference in bone ingrowth is measured with different scaffold design. This result illustrates the benefits of microtomography for analyzing the 3D structure of scaffolds and the resultant bone ingrowth.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Materiais Biocompatíveis / Tomografia Computadorizada por Raios X / Engenharia Tecidual Limite: Animals Idioma: En Revista: Biomaterials Ano de publicação: 2007 Tipo de documento: Article País de afiliação: Austrália
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Materiais Biocompatíveis / Tomografia Computadorizada por Raios X / Engenharia Tecidual Limite: Animals Idioma: En Revista: Biomaterials Ano de publicação: 2007 Tipo de documento: Article País de afiliação: Austrália