Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.
Anal Bioanal Chem
; 389(1): 241-9, 2007 Sep.
Article
em En
| MEDLINE
| ID: mdl-17486321
Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to glycerol to yield a (13)C-labelled tridocosahexaenoin.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Produtos Biológicos
/
Saúde
/
Ciências da Nutrição
/
Ácidos Graxos Insaturados
Tipo de estudo:
Guideline
Idioma:
En
Revista:
Anal Bioanal Chem
Ano de publicação:
2007
Tipo de documento:
Article
País de afiliação:
Canadá
País de publicação:
Alemanha