[18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer.
Int J Radiat Oncol Biol Phys
; 69(1): 286-93, 2007 Sep 01.
Article
em En
| MEDLINE
| ID: mdl-17707283
PURPOSE: To define the best threshold for tumor volume delineation of the (18) fluoro-2-deoxy-glucose positron emission tomography ((18)FDG-PET) signal for radiotherapy treatment planning of intensity-modulated radiotherapy (IMRT) in head and neck cancer. METHODS AND MATERIALS: In 25 patients with head-and-neck cancer, CT-based gross tumor volume (GTV(CT)) was delineated. After PET-CT image fusion, window level (L) was adapted to best fit the GTV(CT), and GTV(PET) was delineated. Tumor maximum (S) and background uptake (B) were measured, and the threshold of the background-subtracted tumor maximum uptake (THR) was used for PET signal segmentation. Gross tumor volumes were expanded to planning target volumes (PTVs) and analyzed. RESULTS: The mean value of S was 40 kBq/mL, S/B ratio was 16, and THR was 26%. The THR correlated with S (r = -0.752), but no correlation between THR and the S/B ratio was seen (r = -0.382). In 77% of cases, S was >30 kBq/mL, and in 23% it was =30 kBq/mL, with a mean THR of 21.4% and 41.6%, respectively (p < 0.001). Using PTV(PET) in radiotherapy treatment planning resulted in a reduced PTV in 72% of cases, while covering 88.2% of GTV(CT), comparable to the percentage of GTV(PET) covered by PTV(CT) (p = 0.15). CONCLUSIONS: A case-specific PET signal threshold is optimal in PET-based radiotherapy treatment planning. Signal gating using a THR of 20% in tumors with S >30% +/- 1.6% kBq/mL and 40% in tumors with S =30% +/- 1.6% kBq/mL is suitable.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Planejamento da Radioterapia Assistida por Computador
/
Tomografia Computadorizada por Raios X
/
Tomografia por Emissão de Pósitrons
/
Radioterapia de Intensidade Modulada
/
Neoplasias de Cabeça e Pescoço
Limite:
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Int J Radiat Oncol Biol Phys
Ano de publicação:
2007
Tipo de documento:
Article
País de publicação:
Estados Unidos