An algorithmic approach for static and dynamic gesture recognition utilising mechanical and biomechanical characteristics.
Int J Bioinform Res Appl
; 3(1): 4-23, 2007.
Article
em En
| MEDLINE
| ID: mdl-18048170
We propose a novel approach for recognising static and dynamic hand gestures by analysing the raw data streams generated by the sensors attached to the human hands. We utilise the concept of 'range of motion' in the movement of fingers and exploit this characteristic to analyse the acquired data for recognising hand signs. Our approach for hand gesture recognition addresses two major problems: user-dependency and device-dependency. Furthermore, we show that our approach neither requires calibration nor involves training. We apply our approach for recognising American Sign Language (ASL) signs and show that more than 75% accuracy in sign recognition can be achieved.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Língua de Sinais
/
Fenômenos Biomecânicos
/
Biologia Computacional
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Int J Bioinform Res Appl
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2007
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Suíça