Your browser doesn't support javascript.
loading
Neural systems with numerically matched input-output statistic: isotonic bivariate statistical modeling.
Fiori, Simone.
Afiliação
  • Fiori S; Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy. fiori@deit.univpm.it
Comput Intell Neurosci ; : 71859, 2007.
Article em En | MEDLINE | ID: mdl-18566641
Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there are "holes" in the data) or when the data sets have been acquired independently. Also, statistical modeling is useful when the amount of available data is enough to show relevant statistical features of the phenomenon underlying the data. We propose to tackle the problem of statistical modeling via a neural (nonlinear) system that is able to match its input-output statistic to the statistic of the available data sets. A key point of the new implementation proposed here is that it is based on look-up-table (LUT) neural systems, which guarantee a computationally advantageous way of implementing neural systems. A number of numerical experiments, performed on both synthetic and real-world data sets, illustrate the features of the proposed modeling procedure.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Intell Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2007 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Intell Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2007 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos