Your browser doesn't support javascript.
loading
Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage.
Kang, Yoonsung; Lee, Jung-Hee; Hoan, Nguyen Ngoc; Sohn, Hong-Moon; Chang, In-Youb; You, Ho Jin.
Afiliação
  • Kang Y; Departments of Pharmacology, Bio-materials, Orthopedic Surgery, and Anatomy, Chosun University, 375 Seosuk-dong, Gwangju 501-759, Korea.
J Biol Chem ; 284(15): 9845-53, 2009 Apr 10.
Article em En | MEDLINE | ID: mdl-19176521
ABSTRACT
53BP1 (p53-binding protein 1) is a conserved nuclear protein that is phosphorylated in response to DNA damage and rapidly recruited to the site of DNA double strand breaks, demonstrating its role in the early events to DNA damage and repair of damaged DNA. In this study, we used the yeast two-hybrid system to identify proteins that interact with 53BP1. Identification and characterization of 53BP1 protein interactions may help to further elucidate the function and regulation of 53BP1. We identified protein phosphatase 5 (PP5), a serine/threonine phosphatase that has been implicated in multiple cellular function, as a 53BP1-binding protein. This interaction further confirmed that 53BP1 interacts with PP5 in PP5-overexpressing U2OS cells, after radiomimetic agent neocarzinostatin (NCS) treatment. 53BP1 dephosphorylation at Ser-25 and Ser-1778 was accelerated in PP5-overexpressing U2OS cells following NCS treatment, and its dephosphorylation was correlated with reduced phospho-53BP1 foci formation. In contrast, the overexpression of PP5 had no effect on NCS-activated BRCA1-Ser-1524 phosphorylation. Additionally, PP5 down-regulation inhibited the dephosphorylation of 53BP1 on Ser-1778 and the disappearance of phospho-53BP1 foci following NCS treatment. Moreover, non-homologous end-joining activity was reduced in PP5-overexpressing U2OS cells. These findings indicate that PP5 plays an important role in the regulation of 53BP1 phosphorylation and activity in vivo.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Nucleares / Fosfoproteínas Fosfatases / Peptídeos e Proteínas de Sinalização Intracelular Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Nucleares / Fosfoproteínas Fosfatases / Peptídeos e Proteínas de Sinalização Intracelular Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2009 Tipo de documento: Article
...