Your browser doesn't support javascript.
loading
5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics.
Eisenmann, K M; Dykema, K J; Matheson, S F; Kent, N F; DeWard, A D; West, R A; Tibes, R; Furge, K A; Alberts, A S.
Afiliação
  • Eisenmann KM; Laboratories of Cell Structure & Signal Integration, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
Oncogene ; 28(39): 3429-41, 2009 Oct 01.
Article em En | MEDLINE | ID: mdl-19597464
ABSTRACT
Complete loss or interstitial deletions of chromosome 5 are the most common karyotypic abnormality in myelodysplastic syndromes (MDSs). Isolated del(5q)/5q- MDS patients have a more favorable prognosis than those with additional karyotypic defects, who tend to develop myeloproliferative neoplasms (MPNs) and acute myeloid leukemia. The frequency of unbalanced chromosome 5 deletions has led to the idea that 5q harbors one or more tumor-suppressor genes that have fundamental roles in the growth control of hematopoietic stem/progenitor cells (HSCs/HPCs). Cytogenetic mapping of commonly deleted regions (CDRs) centered on 5q31 and 5q32 identified candidate tumor-suppressor genes, including the ribosomal subunit RPS14, the transcription factor Egr1/Krox20 and the cytoskeletal remodeling protein, alpha-catenin. Although each acts as a tumor suppressor, alone or in combination, no molecular mechanism accounts for how defects in individual 5q candidates may act as a lesion driving MDS or contributing to malignant progression in MPN. One candidate gene that resides between the conventional del(5q)/5q- MDS-associated CDRs is DIAPH1 (5q31.3). DIAPH1 encodes the mammalian Diaphanous-related formin, mDia1. mDia1 has critical roles in actin remodeling in cell division and in response to adhesive and migratory stimuli. This review examines evidence, with a focus on mouse gene-targeting experiments, that mDia1 acts as a node in a tumor-suppressor network that involves multiple 5q gene products. The network has the potential to sense dynamic changes in actin assembly. At the root of the network is a transcriptional response mechanism mediated by the MADS-box transcription factor, serum response factor (SRF), its actin-binding myocardin family coactivator, MAL, and the SRF-target 5q gene, EGR1, which regulate the expression of PTEN and p53-family tumor-suppressor proteins. We hypothesize that the network provides a homeostatic mechanism balancing HPC/HSC growth control and differentiation decisions in response to microenvironment and other external stimuli.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndromes Mielodisplásicas / Cromossomos Humanos Par 5 / Genes Supressores de Tumor / Actinas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Oncogene Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndromes Mielodisplásicas / Cromossomos Humanos Par 5 / Genes Supressores de Tumor / Actinas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Oncogene Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Estados Unidos